403 research outputs found

    Bagging ensemble selection for regression

    Get PDF
    Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classiïŹcation problems have shown that using random trees as base classiïŹers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classiïŹcation, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles

    Sec-Lib: Protecting Scholarly Digital Libraries From Infected Papers Using Active Machine Learning Framework

    Get PDF
    Researchers from academia and the corporate-sector rely on scholarly digital libraries to access articles. Attackers take advantage of innocent users who consider the articles' files safe and thus open PDF-files with little concern. In addition, researchers consider scholarly libraries a reliable, trusted, and untainted corpus of papers. For these reasons, scholarly digital libraries are an attractive-target and inadvertently support the proliferation of cyber-attacks launched via malicious PDF-files. In this study, we present related vulnerabilities and malware distribution approaches that exploit the vulnerabilities of scholarly digital libraries. We evaluated over two-million scholarly papers in the CiteSeerX library and found the library to be contaminated with a surprisingly large number (0.3-2%) of malicious PDF documents (over 55% were crawled from the IPs of US-universities). We developed a two layered detection framework aimed at enhancing the detection of malicious PDF documents, Sec-Lib, which offers a security solution for large digital libraries. Sec-Lib includes a deterministic layer for detecting known malware, and a machine learning based layer for detecting unknown malware. Our evaluation showed that scholarly digital libraries can detect 96.9% of malware with Sec-Lib, while minimizing the number of PDF-files requiring labeling, and thus reducing the manual inspection efforts of security-experts by 98%

    Scholarly digital libraries as a platform for malware distribution

    Get PDF
    Researchers from academic institutions and the corporate sector rely heavily on scholarly digital libraries for accessing journal articles and conference proceedings. Primarily downloaded in the form of PDF files, there is a risk that these documents may be compromised by attackers. PDF files have many capabilities that have been widely used for malicious operations. Attackers increasingly take advantage of innocent users who open PDF files with little or no concern, mistakenly considering these files safe and relatively non-threatening. Researchers also consider scholarly digital libraries reliable and home to a trusted corpus of papers and untainted by malicious files. For these reasons, scholarly digital libraries are an attractive target for cyber-attacks launched via PDF files. In this study, we present several vulnerabilities and practical distribution attack approaches tailored for scholarly digital libraries. To support our claim regarding the attractiveness of scholarly digital libraries as an attack platform, we evaluated more than two million scholarly papers in the CiteSeerX library that were collected over 8 years and found it to be contaminated with a surprisingly large number (0.3%-2%) of malicious scholarly PDF documents, the origin of which is 46 different countries spread worldwide. More than 55% of the malicious papers in CiteSeerX were crawled from IP's belonging to USA universities, followed by those belonging to Europe (33.6%). We show how existing scholarly digital libraries can be easily leveraged as a distribution platform both for a targeted attack and in a worldwide manner. On average, a certain malicious paper caused high impact damage as it was downloaded 167 times in 5 years by researchers from different countries worldwide. In general, the USA and Asia downloaded the most malicious scholarly papers, 40.15% and 27.9%, respectively. The top malicious scholarly document downloaded is a malicious version of a popular paper in the computer forensics domain, with 2213 downloads in a worldwide coverage of 108 different countries. Finally, we suggest several concrete solutions for mitigating such attacks, including simple deterministic solutions and also advanced machine learning-based frameworks

    Multiple Imputation Ensembles (MIE) for dealing with missing data

    Get PDF
    Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases

    Examining the Link Between Domestic Violence Victimization and Loneliness in a Dutch Community Sample: A Comparison Between Victims and Nonvictims by Type D Personality

    Get PDF
    The current study investigated whether differences in loneliness scores between individuals with a distressed personality type (type D personality) and subjects without such a personality varied by domestic violence victimization. Participants (N = 625) were recruited by random sampling from the Municipal Basic Administration of the Dutch city of ‘s-Hertogenbosch and were invited to fill out a set of questionnaires on health status. For this study, only ratings for domestic violence victimization, type D personality, feelings of loneliness, and demographics were used. Statistical analyses yielded main effects on loneliness for both type D personality and history of domestic violence victimization. Above and beyond these main effects, their interaction was significantly associated with loneliness as well. However, this result seemed to apply to emotional loneliness in particular. Findings were discussed in light of previous research and study limitations

    An ant colony-based semi-supervised approach for learning classification rules

    Get PDF
    Semi-supervised learning methods create models from a few labeled instances and a great number of unlabeled instances. They appear as a good option in scenarios where there is a lot of unlabeled data and the process of labeling instances is expensive, such as those where most Web applications stand. This paper proposes a semi-supervised self-training algorithm called Ant-Labeler. Self-training algorithms take advantage of supervised learning algorithms to iteratively learn a model from the labeled instances and then use this model to classify unlabeled instances. The instances that receive labels with high confidence are moved from the unlabeled to the labeled set, and this process is repeated until a stopping criteria is met, such as labeling all unlabeled instances. Ant-Labeler uses an ACO algorithm as the supervised learning method in the self-training procedure to generate interpretable rule-based models—used as an ensemble to ensure accurate predictions. The pheromone matrix is reused across different executions of the ACO algorithm to avoid rebuilding the models from scratch every time the labeled set is updated. Results showed that the proposed algorithm obtains better predictive accuracy than three state-of-the-art algorithms in roughly half of the datasets on which it was tested, and the smaller the number of labeled instances, the better the Ant-Labeler performance

    Deterministic Classifiers Accuracy Optimization for Cancer Microarray Data

    Get PDF
    The objective of this study was to improve classification accuracy in cancer microarray gene expression data using a collection of machine learning algorithms available in WEKA. State of the art deterministic classification methods, such as: Kernel Logistic Regression, Support Vector Machine, Stochastic Gradient Descent and Logistic Model Trees were applied on publicly available cancer microarray datasets aiming to discover regularities that provide insights to help characterization and diagnosis correctness on each cancer typology. The implemented models, relying on 10-fold cross-validation, parameterized to enhance accuracy, reached accuracy above 90%. Moreover, although the variety of methodologies, no significant statistic differences were registered between them, at significance level 0.05, confirming that all the selected methods are effective for this type of analysis.info:eu-repo/semantics/publishedVersio

    Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury

    Get PDF
    Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Abeta accumulation and behavioral impairments in the Tg2576 mice

    Bedside theatre performance and its effects on hospitalised children's well-being

    Get PDF
    This article reports on practice-based pilot research being undertaken at Birmingham Children's Hospital in England on the impact of bedside theatre performance on hospitalised children's well-being. It discusses the process of creating theatre for sick children, connecting with the hospital and working within the hospital tight routines, dealing with ethics, working with theatre artists and performing to children bedside. It also reports on evidence collected by questionnaire and interviews about the perceived benefits of bedside theatre by children and their parent/carers. This emphasis on the process is appropriate for theatre practitioners, arts therapists and clinical staff who work with hospitalised children

    Self-organizing ontology of biochemically relevant small molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest.</p> <p>Results</p> <p>To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development.</p> <p>Conclusions</p> <p>We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development.</p
    • 

    corecore