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Abstract. The objective of this study was to improve classification accuracy in 

cancer microarray gene expression data using a collection of machine learning 

algorithms available in WEKA. State of the art deterministic classification 

methods, such as: Kernel Logistic Regression, Support Vector Machine, Sto-

chastic Gradient Descent and Logistic Model Trees were applied on publicly 

available cancer microarray datasets aiming to discover regularities that provide 

insights to help characterization and diagnosis correctness on each cancer ty-

pology. The implemented models, relying on 10-fold cross-validation, parame-

terized to enhance accuracy, reached accuracy above 90%. Moreover, although 

the variety of methodologies, no significant statistic differences were registered 

between them, at significance level 0.05, confirming that all the selected meth-

ods are effective for this type of analysis. 

Keywords: Classification, cancer, microarray, datamining, machine learning. 

1 Introduction 

Accurate prediction and prognostic risk factor identification are essential to offer 

appropriate care for patients with cancer. Therefore, it is necessary to find biomarkers 

for the identification of different cancer typologies. Currently, with the evolution of 

microarray technology, it is possible for researchers to classify the types of cancer 

based on the patterns of gene activity in the tumor cells. For this purpose, statistical 

methods and machine learning techniques can be employed, such as classification 

methods to allow the assignment of class labels to samples with unknown biological 

condition, feature selection to identify informative genes and, additionally, clustering 

methods to discover classes of related biological samples. Detailed reviews on the 

technology and statistical methods often used in microarray analysis are presented in 

[1–3]. The objective of this work was to employ machine learning algorithms to ana-

lyze and classify gene expression data from cancer tissue samples provided by micro-

arrays. The developed work included the use of three publicly available gene microar-

ray datasets, described in the methodology section, on which the methods were tested 

and the performance assessed in order to compare the results with the best achieve-

ments published in the literature. 
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This paper has been structured as follows. After a brief introduction, section 2 de-

scribes the context and the state of art. Section 3 explains the methodology followed 

in this study, the procedures, the gene microarray datasets, the classification methods 

implemented as well as the optimal parameters adopted, concluding with the perfor-

mance assessment of the classification methods. Experimental work using WEKA 

datamining workbench, the obtained results are discussed in Section 4 and the conclu-

sions are presented in Section 5. 

2 Background 

2.1 Microarray Technology 

In the last two decades microarrays were widely used to study gene expression. 

Main microarray technology includes Affymetrix [4] and Illumina [5] platforms. Oth-

er important microarray manufacturers are Exiqon [6], Agilent [7] or Taqman [8]. 

Gene microarray technology rest on the ability to deposit many (tens of thousands) 

different DNA sequences on a small surface, often referred to as a “chip”. The differ-

ent DNA fragments are arranged in rows and columns, in order to identify the loca-

tion and distinguish the level of expression of each fragment on the array. Microar-

rays allow the measurement at expression level of a large simultaneous number of 

genes. Initially, the gene expression values are obtained by means of microscopic 

DNA spots attached to a solid surface which have followed a hybridization process 

[9], then it is possible to read the expression values with a laser, and subsequently 

store the quantification levels in a file.  

Microarray technology has been extensively used by the scientific community. Ac-

cordingly, there has been a lot of data generation related to gene expression. This data 

is scattered and not easily available for public use. The National Center of Biotech-

nology Information (NCBI) organized, integrated and made available microarray data 

through a web service, the Gene Expression Omnibus or GEO. GEO is a data reposi-

tory facility which includes data on gene expression from various sources. 

Microarray technology possesses extensive applications in the medical field, main-

ly regarding diagnostics and prognostics. In this context, microarrays are widely used 

to know the state of a disease, type of tumor and other important factors for the pa-

tient treatment [10]. 

Considering disease diagnosis, it allows researchers to study and gather knowledge 

about many diseases such as mental illness, heart diseases, infectious disease and 

particularly the study of cancer [11]. They are also used in pharmacology response, 

which consists of the study of correlations between therapeutic responses to drugs and 

the genetic profiles of the patients, and additionally in the toxicological research to 

establish a correlation between responses to toxicants and the changes in the genetic 

profiles of the cells exposed to toxicants [12]. 



 

2.2 Deterministic Classifiers Overview 

Kernel Logistic Regression (KLR) model is a statistical classifier [13]  that gener-

ates a fit model by minimizing the negative log-likelihood with a quadratic penalty 

using the Broyden-Fletcher-Goldfard-Shanno (BFGS) optimization [14]. 

Support Vector Machine (SVM) algorithm is a discriminative classifier that tries to 

find an optimal hyperplane with maximal margin [15, 16]. SVM was developed for 

binary classification problems, although extensions to the technique have been made 

to support multi-class classification and regression problems [9]. This classifier is a 

state of the art classification system. In Cao et al. [17] SVM was applied in two-class 

datasets (Leukemia and colon Tumor) and also in multi-class datasets, proposing a 

novel fast feature selection method based on multiple SVDD (Support Vector Data 

Description). [18] focused on supervised gene expression analysis of cancers microar-

rays: prostate cancer, lymphoma and breast cancer. SVM algorithm is implemented in 

practice using selectable kernel functions. The kernel defines the similarity or a dis-

tance measure between new data and support vectors. The dot product is the similarity 

measure used for linear SVM or a linear kernel because the distance is a linear com-

bination of the inputs. Other kernels can be used to transform the input space into 

higher dimensions such as Polynomial Kernel and a Radial Kernel. WEKA includes a 

derivative of SVM, the SMO implementation using sequential minimal optimization, 

described in [19]. 

The Stochastic Gradient Descent (SGD) algorithm implements a plain stochastic 

gradient descent learning routine which supports different loss functions and penalties 

for classification. Available loss functions include the Hinge loss (linear support vec-

tor classifier), Log loss (logistic regression), Squared loss (least squares linear regres-

sion), Epsilon-insensitive loss (support vector regression) and Huber loss (robust re-

gression).  

Decision tree classifiers recursively partition the instance space using hyperplanes 

that are orthogonal to axes. The model is built from a root node which represents an 

attribute and the instance space split is based on function of attribute values (split 

values are chosen differently for different algorithms), most frequently using its val-

ues. Then, each new sub-space of the data is split into new sub-spaces iteratively until 

an end criterion is met and the terminal nodes (leaf nodes) are each assigned a class 

label that represents the classification outcome (the class of all or majority of the in-

stances contained in the sub-space). Setting the right end criterion is very important 

because trees that are too large can be overfitted and small trees can be underfitted, 

suffering a loss in accuracy in both cases. Most of the algorithms have a mechanism 

built in that deals with overfitting; it is called pruning. 

Each new instance is classified by navigating them from the root of the tree down 

to a leaf, according to the outcome of the tests along the path [20, 21]. 

Although there are several methodologies to implement decision tree classifiers, 

for instance: SimpleCart, BFTree, FT, J48, LADTree, LMT and REPTree, the litera-

ture refers Logistic Model Trees (LMT) as the most efficient to classify microarray 

datasets [22]. 



A Logistic Model Trees (LMT) is a classification algorithm that integrates decision 

tree induction with logistic regression, building the logistic regression (LR) models at 

the leaves by incrementally refining those constructed at higher levels in the tree [23]. 

In the logistic variant, the LogitBoost algorithm [24] is used to produce an LR model 

at every node in the tree; the node is then split using the C4.5 criterion. Boosting 

works by sequentially applying a classification algorithm to reweighted versions of 

the training data and then taking a weighted majority vote of the sequence of classifi-

ers thus produced. For many classification algorithms, this simple strategy results in a 

dramatic improvement in performance. 

3  Methods 

3.1 Experimental procedures 

The experimental work was based on the WEKA, version 3.8.3, a datamining 

workbench publicly accessible at: www.cs.waikato.ac.nz/ml/weka/. After data prepa-

ration and method selection (considering accuracy above 90%), using the explorer 

module, the module experimenter was used to automate experiments to achieve mul-

tiple classifiers comparison, testing with Paired T-Tester (Corrected). Prior to the 

experimental analysis, the microarray datasets were pre-processed and normalized on 

the interval [0,1]. Successively, an external ten-fold cross-validation was performed, 

which randomly divides each dataset into ten equal parts. In each validation, one of 

them is taken as the testing set, and the others nine parts are used as the training set. 

The training and test data do not overlap each other to assure an unbiased comparison. 

Three functions based classifiers (KLR, SMO and SGD algorithms) and one decision 

tree classifier (LMT algorithm) were used as base learners. To compare classification 

performance, we created an experiment that ran 10 times several schemes (all classifi-

cations methods used) against each dataset with 10-fold cross-validation. Subsequent-

ly, we used literature mining analysis results to compare the performance of the 

methods applied in these microarrays datasets. These set of experiments were con-

ducted on a computer with an Intel Core i7-5500U CPU 2.40 GHz processor, with 

8.00 GB RAM.  

3.2 Datasets 

Three publicly available microarray datasets from different cancer typologies were 

used to test the classification methods, namely Leukemia, Lymphoma and Prostate 

datasets. The Leukemia datasets were obtained online from 

http://portals.broadinstitute.org/cgi-

bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=63, and were published 

as part of the experimental work in [25]. The Lymphoma and Prostate datasets were 

obtained online from http://ico2s.org/datasets/microarray.html, and were published as 

part of the experimental work in [26, 27]. 



 

All of them are two-class datasets. In Leukemia (a) dataset are present two types of 

leukemia: Acute Lymphoblastic (ALL) and Acute Myeloid Leukemia (AML). The 

leukemia dataset was analyzed in two different versions, the original composed by 52 

samples and 12582 genes and a reduced version, composed by 28 samples keeping 

the same features. The goal for this subdivision was to test if the number of samples 

influences the prediction results. 

Lymphoma dataset consists of 58 Diffuse large B-cell lymphoma samples vs. 19 

follicular lymphoma samples.  

Prostate cancer datasets consist of 52 tumor samples vs. 50 controls. 

The composition details of the used datasets are shown below in Table 1. 

 
Table 1. Used datasets characterization. 

Dataset 2 Classes Genes References 

Leukemia(a) 24 – 28 (ALL –AML) 12582 [25] 

Leukemia(b) 14 – 14 (ALL –AML) 12582 [25] 

Diffuse large B-cell lymphoma 58 – 19 2647 [26] 

Prostate cancer 52 - 50 2135 [27] 

3.3 Classification methods parameterization 

KLR method 

The parameters optimized were support vector with different types of kernel func-

tion. The penalty parameter λ with smaller values conjugated with different types of 

kernel functions was tested. The linear kernel function with λ=0.001 presented the 

smaller mean absolute error. 

SVM method 

We used the SMO classifier, a specific efficient optimization algorithm used to en-

hance the SVM performance. The model contains the complexity parameter C that 

influences the number of support vectors, we set C to 0.5. If C is lower, the more 

sensitive the algorithm becomes to training data, leading to higher variance and lower 

bias. With a higher C, the algorithm becomes less sensitive to the training data, in this 

case we obtain lower variance and higher bias. We tested polynomial functions of 

different degrees with different filters types without good results and, consequently a 

polynomial kernel without filter was selected, having set the exponent to 0.5.  

SGD method 

SGD is an optimization method for unconstrained optimization problems. It ap-

proximates the true gradient by considering a single training example at a time. The 

algorithm works iteratively over the training examples and for each example updates 

the model parameters. The learning rate parameter was optimized setting a small val-

ue (0.0001) affecting the learning binary class SVM. 

LMT method 

LMT consists of a tree structure that is made up of a set of inner or non-terminal 

nodes 𝑁 and a set of leaves or terminal nodes 𝑇. Considering 𝑆 the whole instance 

space, spanned by all attributes that are presented in the dataset. Then the tree struc-

ture gives a disjoint subdivision of S into regions 𝑆𝑡 , and every region is represented 

by a leaf in the tree: 



𝑆 = ⋃ 𝑆𝑡 𝑡∈𝑇     𝑆𝑡 ∩ 𝑆𝑡´ = ∅  for 𝑡 ≠ 𝑡´ 
The model represented by whole LMT is given by 𝐹𝑗 (𝑥) = 𝛼0

𝑗
+ ∑ 𝛼𝑣𝑘

𝑗
.𝑚

𝑘=1 𝑣𝑘  

If 𝛼𝑣𝑘

𝑗
= 0 for 𝑣𝑘  ∉  𝑉𝑡. The model of LMT is then given by 

𝑓(𝑥) = ∑ 𝑓𝑡

𝑡∈𝑇

(𝑥). 𝐼(𝑥 ∈ 𝑆𝑡) 

Where 𝐼(𝑥 ∈ 𝑆𝑡) is 1 if 𝑥 ∈ 𝑆𝑡 and 0 otherwise. Considering the WEKA implementa-

tion of LMT, we used the fast regression heuristic that avoids cross-validating the 

number of LogitBoost iterations at every node [23]. LMT employs the minimal cost-

complexity pruning mechanism to produce a compact tree structure. 

3.4 Performance Evaluation 

In this study, we trained the classifiers to predict outcomes of cancer microarray 

datasets contained positive samples and control samples. The evaluation measures to 

evaluate the classifiers [28, 29], include classification accuracy (𝐴𝐶𝐶), i. e., the ratio 

of the true positives and true negatives obtained by the classifier over the total number 

of instances in the test dataset, defined as: 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Kappa (𝑘) coefficient is a statistical measure for qualitative (categorical) items as 

given by: 

𝑘 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

Kappa coefficient is interpreted using the guidelines outlined by Landis and Koch 

(1977), where strength of the 𝑘 is interpreted in the flowing manner: 0.01-0.20 slight; 

0.21-0.40 fair; 0.41-0.60 moderate; 0.61-0.80 substantial; 0.81-1.00 almost perfect 

[30]. 

Mean Absolute Error (MAE) measures the average magnitude of the errors in a set 

of prediction, without considering their direction [31]. It is given by: 

𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − actual𝑖|𝑛

𝑖=1

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Precision (𝑃𝑅𝐸), it is also called the Positive Predictive Values (PPV), is the pro-

portion of the true positives against the true positives and false positives, as given by 

equation: 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (𝑅𝐸𝐶) also called sensitivity and hit rate, is the proportion of the true posi-

tives against true positives and false negatives, as given by the equation: 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-measure, it is also called F score, is the harmonic mean of precision and recall 

which is given by the equation: 

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑅𝐸 ∗ 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 

ROC stands for Receiver Operating Characteristic. It´s created by plotting the True 

Positives rates vs False Positives rates. It is also exploited to evaluate the performance 

of classifiers as Area Under ROC. 



 

4 Results and Discussion 

For each dataset in this study, the results of the classifiers estimation performance 

are presented in Table 2. These results are expressed on average, considering the 10 

times that each test was repeated. 

 

Table 2. Results achieved by algorithms with 10-fold cross-validation. 

 
 

Dataset 

 

Classifier 

ACC(%) 

(st. dev.) 

k 

(st. dev.) 

MAE 

(st. dev.) 

Recall 

(st. dev.) 

F-Measure 

(st. dev.) 

Area Under 

ROC 

(st. dev.) 

 

 

Leukemia 

(a) 

KLR 100 1 0.01(0.01) 1 1 1 

SVM 100 1 0.00 1 1 1 

LMT 97.33(6.67) 0.94(0.14) 0.13(0.08)* 0.94(0.14) 0.96(0.09) 1 

SGD 100 1 0.00 1 1 1 

 

 

Leukemia 

(b) 

KLR 98.17(8.17) 0.95(0.20) 0.02(0.06) 1 0.99(0.06) 1 

SVM 96.67(10.86) 0.93(0.24) 0.03(0.11) 1 0.97(0.09) 0.96(0.12) 

LMT 100 1 0.14(0.04)* 1 1 1 

SGD 96.33(11.26) 0.92(0.26) 0.04(0.11) 1 0.97(0.09) 0.96(0.13) 

 

Diffuse 

large B-

cell lym-

phoma 

KLR 95.50(6.90) 0.87(0.22) 0.05(0.06) 0.97(0.07) 0.97(0.04) 0.98(0.05) 

SVM 98.70(3.94) 0.97(0.09) 0.01(0.04) 0.98(0.05) 0.99(0.03) 0.99(0.03) 

LMT 92.25(10.35) 0.77(0.31) 0.09(0.09) 0.96(0.09) 0.95(0.07) 0.94(0.15) 

SGD 98.20(4.84) 0.96(0.11) 0.02(0.05) 0.98(0.06) 0.99(0.04) 0.99(0.04) 

 

 

Prostate 

cancer 

KLR 89.18(8.61) 0.78(0.17) 0.11(0.08) 0.89(0.13) 0.89(0.09) 0.96(0.06) 

SVM 92.33(8.27) 0.85(0.17) 0.08(0.08) 0.96(0.09) 0.93(0.08) 0.92(0.08) 

LMT 90.76(8.83) 0.81(0.18) 0.15(0.07) 0.92(0.12) 0.91(0.09) 0.95(0.07) 

SGD 90.18(8.21) 0.80(0.16) 0.10(0.08) 0.93(0.11) 0.90(0.08) 0.90(0.08)* 

* Statistically different at significance level 0.05 

 

The experiment was configured using KLR as the referential for all datasets, the 

results registered in Table 2 correspond to the comparison between the different clas-

sifiers considering the used evaluation measures. 

 

Leukemia   

On leukemia (a) dataset, the prediction results of KLR, SVM, and SGD are 100% 

ACC followed by LMT with ACC of ≈97%. Kappa coefficient results of KLR, SVM 

and SGD indicates a perfect agreement (1) between the classification and the true 

classes, having a LMT result almost perfect (≈0.94). F-measure and Area under ROC 

presents results nearly 1 on all methods, which indicates the good performance of the 

classification models used. These results are similar because there are not differences 

statistically significant between them. On the contrary, MAE is statistically better in 

KLR than LMT but not statistically significant differences on SVM and SGD, the 

same is verified on leukemia (b) dataset. On the leukemia (b) dataset, LMT achieves 

100% ACC. On the contrary, SVM and SGD achieved ACC ≈96.67% and 

ACC≈96.33%, respectively, but they do not present differences statistically signifi-

cant as well. In comparison, the cross-validation results reported in literature for this 



datasets [17], presented results of SVM methods using kernel functions achieving 

results of average recall equal to 93.93%. In the cited work, the authors optimized the 

method to achieve the best results equal to 96.43% of average recall, however their 

study used a smaller number of features. In [32], leukemia datasets with smaller num-

ber of features presented the maximum ACC results equal to 97.43% using the RBF 

Network classifier. 

Diffuse Large B-cell Lymphoma 

For the Diffuse Large B-cell lymphoma dataset, the ACC result of SVM is 98.70% 

and SGD is 98.20%, followed by KLR with 95.50% and then LMT with 92.25%.  K 

results of LMT revealed a substantial agreement (0.77) between the classifications 

and the true classes, whereas the other classifiers presented almost a perfect agree-

ment. On the lymphoma dataset there are no statistical differences on MAE among 

the four classifiers. F-measure and Area under ROC indicates an excellent prediction 

of the classification methods (≥0.9). In literature, the results reported for this dataset 

[18] achieved 95% ACC using a higher number of features. The same datasets were 

analyzed in [32] and presented the best outcome prediction having ACC equal to 

92.45%. In [33] was achieved 95.7% ACC, also with high number of features. 

Prostate Cancer 

For the prostate cancer dataset, the best ACC result was 92.33% and was obtained 

with SVM. LMT, SGD and KLR achieved very close results, respectively 90.76%, 

90.18% and 89.18%. KLR and SGD Kappa coefficient results indicate substantial 

agreement ≈0.78, 0.80, respectively, between these classifiers and the true classes, 

while in SVM and LMT presented almost perfect agreement, with k equal to 0.85 and 

0.81, respectively. However, all k do not present differences statistically significant. 

Analyzing the results of Area under ROC, there is a significant statistical difference 

between KLR (0.96) and SGD (0.90). On the contrary, LMT (0.95) and SVM (0.92) 

are not statistically different. F-measure results were very close to 1, which means 

good performance of all classifiers implemented. Comparatively with our work, in 

[18] was used a higher number of features in the cross-validation results for this da-

taset, achieving 94% ACC. In the papers published by [34] and [33] were obtained 

94.6% and 93.4% ACC, respectively. In [32] the best outcome prediction measured 

by ACC was equal to 95.20% using the SVM classifier. 

5  Conclusions 

All the classifiers involved in this study (KLR, SVM, LMT, SGD) presented good 

performance in gene expression analysis on cancer microarrays data, proving to be 

effective and reliable in this type of data. The classifiers performance, except for the 

measures MAE and Area under ROC, in some schemes, are not statistically different. 

The developed experimental work achieved better or close-to-best performance by 

comparison with other methods applied on the same datasets in the literature. 
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