4,152 research outputs found

    Microscopic origin of granular ratcheting

    Full text link
    Numerical simulations of assemblies of grains under cyclic loading exhibit ``granular ratcheting'': a small net deformation occurs with each cycle, leading to a linear accumulation of deformation with cycle number. We show that this is due to a curious property of the most frequently used models of the particle-particle interaction: namely, that the potential energy stored in contacts is path-dependent. There exist closed paths that change the stored energy, even if the particles remain in contact and do not slide. An alternative method for calculating the tangential force removes granular ratcheting.Comment: 13 pages, 18 figure

    Mass and density of B-type asteroid (702) Alauda

    Full text link
    Observations with the adaptive optics system on the Very Large Telescope reveal that outer main belt asteroid (702) Alauda has a small satellite with primary to secondary diameter ratio of ∼\sim56. The secondary revolves around the primary in 4.9143 ±\pm 0.007 days at a distance of 1227 ±\pm 24 km, yielding a total system mass of (6.057 ±\pm 0.36) ×\times 1018^{18} kg. Combined with an IRAS size measurement, our data yield a bulk density for this B-type asteroid of 1570 ±\pm 500 kg~m−3^{-3}.Comment: In press, ApJ 2011. 6 pages, 4 figure

    A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties

    Get PDF
    We present NNFF1.0, a new determination of the fragmentation functions (FFs) of charged pions, charged kaons, and protons/antiprotons from an analysis of single-inclusive hadron production data in electron-positron annihilation. This determination, performed at leading, next-to-leading, and next-to-next-to-leading order in perturbative QCD, is based on the NNPDF methodology, a fitting framework designed to provide a statistically sound representation of FF uncertainties and to minimise any procedural bias. We discuss novel aspects of the methodology used in this analysis, namely an optimised parametrisation of FFs and a more efficient χ2\chi^2 minimisation strategy, and validate the FF fitting procedure by means of closure tests. We then present the NNFF1.0 sets, and discuss their fit quality, their perturbative convergence, and their stability upon variations of the kinematic cuts and the fitted dataset. We find that the systematic inclusion of higher-order QCD corrections significantly improves the description of the data, especially in the small-zz region. We compare the NNFF1.0 sets to other recent sets of FFs, finding in general a reasonable agreement, but also important differences. Together with existing sets of unpolarised and polarised parton distribution functions (PDFs), FFs and PDFs are now available from a common fitting framework for the first time.Comment: 50 pages, 22 figures, 5 table

    Giant planets around two intermediate-mass evolved stars and confirmation of the planetary nature of HIP67851 c

    Full text link
    Precision radial velocities are required to discover and characterize planets orbiting nearby stars. Optical and near infrared spectra that exhibit many hundreds of absorption lines can allow the m/s precision levels required for such work. However, this means that studies have generally focused on solar-type dwarf stars. After the main-sequence, intermediate-mass stars (former A-F stars) expand and rotate slower than their progenitors, thus thousands of narrow absorption lines appear in the optical region, permitting the search for planetary Doppler signals in the data for these types of stars. We present the discovery of two giant planets around the intermediate-mass evolved star HIP65891 and HIP107773. The best Keplerian fit to the HIP65891 and HIP107773 radial velocities leads to the following orbital parameters: P=1084.5 d; mb_bsinii = 6.0 Mjup_{jup}; ee=0.13 and P=144.3 d; mb_bsinii = 2.0 Mjup_{jup}; ee=0.09, respectively. In addition, we confirm the planetary nature of the outer object orbiting the giant star HIP67851. The orbital parameters of HIP67851c are: P=2131.8 d, mc_csinii = 6.0 Mjup_{jup} and ee=0.17. With masses of 2.5 M⊙_\odot and 2.4 M⊙_\odot HIP65891 and HIP107773 are two of the most massive stars known to host planets. Additionally, HIP67851 is one of five giant stars that are known to host a planetary system having a close-in planet (a<a < 0.7 AU). Based on the evolutionary states of those five stars, we conclude that close-in planets do exist in multiple systems around subgiants and slightly evolved giants stars, but probably they are subsequently destroyed by the stellar envelope during the ascent of the red giant branch phase. As a consequence, planetary systems with close-in objects are not found around horizontal branch stars.Comment: Accepted for publication in A&

    Boosting Higgs pair production in the bbˉbbˉb\bar{b}b\bar{b} final state with multivariate techniques

    Full text link
    The measurement of Higgs pair production will be a cornerstone of the LHC program in the coming years. Double Higgs production provides a crucial window upon the mechanism of electroweak symmetry breaking and has a unique sensitivity to the Higgs trilinear coupling. We study the feasibility of a measurement of Higgs pair production in the bbˉbbˉb\bar{b}b\bar{b} final state at the LHC. Our analysis is based on a combination of traditional cut-based methods with state-of-the-art multivariate techniques. We account for all relevant backgrounds, including the contributions from light and charm jet mis-identification, which are ultimately comparable in size to the irreducible 4b4b QCD background. We demonstrate the robustness of our analysis strategy in a high pileup environment. For an integrated luminosity of L=3\mathcal{L}=3 ab−1^{-1}, a signal significance of S/B≃3S/\sqrt{B}\simeq 3 is obtained, indicating that the bbˉbbˉb\bar{b}b\bar{b} final state alone could allow for the observation of double Higgs production at the High-Luminosity LHC.Comment: 47 pages, 22 figures. v2: updated references, added comparison of post-MVA kinematic distributions. v3: matches published version in EPJ

    Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si

    Get PDF
    Abstract—We have performed a numerical and experimental analysis of the thermal behavior of electrically injected microdisk lasers that are defined in an InGaAsP-based thin film bonded on top of a silicon wafer. Both the turn-on as well as the pulsed-regime temperature evolution in the lasing region was simulated using the finite-element method. The simulation results are in good agreement with experimental data, which was extracted from the broadening of the time-averaged emission spectra. Lasing at room temperature was only possible in pulsed regime due to the high thermal resistance (10 K/mW). Some strategies to decrease the thermal resistance of the microdisk lasers are proposed and discussed. Index Terms—Heterogeneous integration, InGaAsP, integrated optics, microdisk laser, Si, thermal characterization

    c-axis transport and phenomenology of the pseudo-gap state in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We measure and analyze the resistivity of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals for different doping δ\delta. We obtain the fraction of carrier η(T,δ)=ng/nTOT\eta(T,\delta) = n_g/n_{TOT} that do not participate to the c-axis conductivity. All the curves η(T,δ)\eta(T,\delta) collapse onto a universal curve when plotted against a reduced temperature x=[T−Θ(δ)]/Δ∗(δ)x=[T-\Theta(\delta)]/\Delta^{*}(\delta). We find that at the superconducting transition ngn_g is doping independent. We also show that a magnetic field up to 14 T does not affect the degree of localization in the (a,b) planes but widens the temperature range of the x-scaling by suppressing the superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.
    • …
    corecore