Precision radial velocities are required to discover and characterize planets
orbiting nearby stars. Optical and near infrared spectra that exhibit many
hundreds of absorption lines can allow the m/s precision levels required for
such work. However, this means that studies have generally focused on
solar-type dwarf stars. After the main-sequence, intermediate-mass stars
(former A-F stars) expand and rotate slower than their progenitors, thus
thousands of narrow absorption lines appear in the optical region, permitting
the search for planetary Doppler signals in the data for these types of stars.
We present the discovery of two giant planets around the intermediate-mass
evolved star HIP65891 and HIP107773. The best Keplerian fit to the HIP65891 and
HIP107773 radial velocities leads to the following orbital parameters: P=1084.5
d; mbsini = 6.0 Mjup; e=0.13 and P=144.3 d; mbsini = 2.0
Mjup; e=0.09, respectively. In addition, we confirm the planetary nature
of the outer object orbiting the giant star HIP67851. The orbital parameters of
HIP67851c are: P=2131.8 d, mcsini = 6.0 Mjup and e=0.17. With
masses of 2.5 M⊙ and 2.4 M⊙ HIP65891 and HIP107773 are two of the
most massive stars known to host planets. Additionally, HIP67851 is one of five
giant stars that are known to host a planetary system having a close-in planet
(a< 0.7 AU). Based on the evolutionary states of those five stars, we
conclude that close-in planets do exist in multiple systems around subgiants
and slightly evolved giants stars, but probably they are subsequently destroyed
by the stellar envelope during the ascent of the red giant branch phase. As a
consequence, planetary systems with close-in objects are not found around
horizontal branch stars.Comment: Accepted for publication in A&