248 research outputs found

    Accelerating the LSTRS Algorithm

    Get PDF
    In a recent paper [Rojas, Santos, Sorensen: ACM ToMS 34 (2008), Article 11] an efficient method for solvingthe Large-Scale Trust-Region Subproblem was suggested which is based on recasting it in terms of a parameter dependent eigenvalue problem and adjusting the parameter iteratively. The essential work at each iteration is the solution of an eigenvalue problem for the smallest eigenvalue of the Hessian matrix (or two smallest eigenvalues in the potential hard case) and associated eigenvector(s). Replacing the implicitly restarted Lanczos method in the original paper with the Nonlinear Arnoldi method makes it possible to recycle most of the work from previous iterations which can substantially accelerate LSTRS

    COSMOGRAIL: XVII. Time delays for the quadruply imaged quasar PG 1115+080

    Get PDF
    Indexación: Scopus.Acknowledgements. The authors would like to thank R. Gredel for his help in setting up the program at the ESO MPIA 2.2 m telescope, and the anonymous referee for his or her comments on this work. This work is supported by the Swiss National Fundation. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018) and the 2D graphics environment Matplotlib (Hunter 2007). K.R. acknowledge support from PhD fellowship FIB-UV 2015/2016 and Becas de Doctorado Nacional CONICYT 2017 and thanks the LSSTC Data Science Fellowship Program, her time as a Fellow has benefited this work. M.T. acknowledges support by the DFG grant Hi 1495/2-1. G. C.-F. C. acknowledges support from the Ministry of Education in Taiwan via Government Scholarship to Study Abroad (GSSA). D. C.-Y. Chao and S. H. Suyu gratefully acknowledge the support from the Max Planck Society through the Max Planck Research Group for S. H. Suyu. T. A. acknowledges support by the Ministry for the Economy, Development, and Tourism’s Programa Inicativa Científica Milenio through grant IC 12009, awarded to The Millennium Institute of Astrophysics (MAS).We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our results are based on almost daily observations for seven months at the ESO MPIA 2.2 m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyze existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we considered the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications. In 15 yr of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Δt(AB) = 8.3+1.5 -1.6 days (18.7% precision), Δt(AC) = 9.9+1.1 -1.1 days (11.1%) and Δt(BC) = 18.8+1.6 -1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/08/aa33287-18/aa33287-18.htm

    Optimization of Interplanetary Rendezvous Trajectories for Solar Sailcraft Using a Neurocontroller

    Full text link
    As for all low-thrust spacecraft, finding optimal solar sailcraft trajectories is a difficult and time-consuming task that involves a lot of experience and expert knowledge, since the convergence behavior of optimizers that are based on numerical optimal control methods depends strongly on an adequate initial guess, which is often hard to find. Even if the op-timizer converges to an ”optimal trajectory”, this trajectory is typically close to the initial guess that is rarely close to the global optimum. This paper demonstrates, that artificial neural networks in combination with evolutionary algorithms can be applied successfully for optimal solar sailcraft steering. Since these evolutionary neurocontrollers explore the trajectory search space more exhaustively than a human expert can do by using tradi-tional optimal control methods, they are able to find steering strategies that generate better trajectories, which are closer to the global optimum. Results are presented for a Near Earth Asteroid rendezvous mission and for a Mercury rendezvous mission

    Density functional theories and self-energy approaches

    Get PDF
    A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, β-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.This project was part funded by the European Commission (Q5RS-2001-02211), Enterprise Ireland and the Natural Environment Research Council of the United Kingdom

    A solution scan of societal options to reduce transmission and spread of respiratory viruses: SARS-CoV-2 as a case study

    Get PDF
    Societal biosecurity – measures built into everyday society to minimize risks from pests and diseases – is an important aspect of managing epidemics and pandemics. We aimed to identify societal options for reducing the transmission and spread of respiratory viruses. We used SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a case study to meet the immediate need to manage the COVID-19 pandemic and eventually transition to more normal societal conditions, and to catalog options for managing similar pandemics in the future. We used a ‘solution scanning’ approach. We read the literature; consulted psychology, public health, medical, and solution scanning experts; crowd-sourced options using social media; and collated comments on a preprint. Here, we present a list of 519 possible measures to reduce SARS-CoV-2 transmission and spread. We provide a long list of options for policymakers and businesses to consider when designing biosecurity plans to combat SARS-CoV-2 and similar pathogens in the future. We also developed an online application to help with this process. We encourage testing of actions, documentation of outcomes, revisions to the current list, and the addition of further options.</p

    Insights into the High Activity of Ruthenium Phosphide for the Production of Hydrogen in Proton Exchange Membrane Water Electrolyzers

    Get PDF
    The demand of green hydrogen, that is, the hydrogen produced from water electrolysis, is expected to increase dramatically in the coming years. State-of-the-art proton exchange membrane water electrolysis (PEMWE) uses high loadings of platinum group metals, such as Pt in the electrode where hydrogen is produced. Alternative electrodes based on phosphides, sulfides, nitrides, and other low-cost alternatives are under investigation. Herein, a simple process for the preparation of RuP electrodes with high activity for the hydrogen evolution reaction (HER) in acidic electrolyte is described. A straightforward one-pot synthesis that yields RuP nanoparticles with fine-tuned composition and stoichiometry is presented, as determined by multiple characterization techniques, including lab- and synchrotron-based experiments and theoretical modeling. The RuP nanoparticles exhibit a high activity of 10 mA cm−2 at 36 mV overpotential and a Tafel slope of 30 mV dec−1, which is comparable to Pt/C. Moreover, a RuP catalyst-coated membrane (CCM) with a low Ru loading of 0.6 mgRu cm−2 is produced and tested in a PEMWE cell configuration, yielding 1.7 A cm−2 at 2 V. © 2023 The Authors. Advanced Energy and Sustainability Research published by Wiley-VCH GmbH.The authors acknowledge the PROMET-H2 project. This project received funding from the European Union Horizon 2020 research and innovation programme under grant agreement no. 862253. The Deputyship for Research & Innovation, Ministry of Education of Saudi Arabia, is acknowl edged for funding this research work through the project number 341. The authors also acknowledge financial support from grants TED2021- 131033B-I00, PID2020-116712RB-C21, and PID2019-103967RJ-I00 funded by MCIN/AEI/10.13039/501100011033. Computing resources for this work were provided by STFC scientific computing departments of the SCARF cluster. J.T. wishes to acknowledge the Deutsche Akademische Austausch Dienst (DAAD), scholarship code number 57540124. The authors acknowledge Diamond Light Source for time on the VerSoX B07-B beamline under the commissioning proposal cm-28150Peer reviewe

    Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud Recomendaciones basadas en consenso de expertos e informadas en la evidencia

    Get PDF
    The “Asociación Colombiana de Infectología” (ACIN) and the “Instituto de Evaluación de Nuevas Tecnologías de la Salud” (IETS) created a task force to develop recommendations for Covid 19 health care diagnosis, management and treatment informed, and based, on evidence. Theses reccomendations are addressed to the health personnel on the Colombian context of health services. © 2020 Asociacion Colombiana de Infectologia. All rights reserved
    corecore