261 research outputs found

    Piezoelectric nonlinearity and frequency dispersion of the direct piezoelectric response of BiFeO3 ceramics

    Get PDF
    We report on the frequency and stress dependence of the direct piezoelectric d33 coefficient in BiFeO3 ceramics. The measurements reveal considerable piezoelectric nonlinearity, i.e., dependence of d33 on the amplitude of the dynamic stress. The nonlinear response suggests a large irreversible contribution of non-180{\deg} domain walls to the piezoelectric response of the ferrite, which, at present measurement conditions, reached a maximum of 38% of the total measured d33. In agreement with this interpretation, both types of non-180{\deg} domain walls, characteristic for the rhombohedral BiFeO3, i.e., 71{\deg} and 109{\deg}, were identified in the poled ceramics using transmission electron microscopy (TEM). In support to the link between nonlinearity and non-180{\deg} domain wall contribution, we found a correlation between nonlinearity and processes leading to deppining of domain walls from defects, such as quenching from above the Curie temperature and high-temperature sintering. In addition, the nonlinear piezoelectric response of BiFeO3 showed a frequency dependence that is qualitatively different from that measured in other nonlinear ferroelectric ceramics, such as "soft" (donor-doped) Pb(Zr,Ti)O3 (PZT); possible origins of this dispersion are discussed. Finally, we show that, once released from pinning centers, the domain walls can contribute extensively to the electromechanical response of BiFeO3; in fact, the extrinsic domain-wall contribution is relatively as large as in Pb-based ferroelectric ceramics with morphotropic phase boundary (MPB) composition, such as PZT. This finding might be important in the search of new lead-free MPB compositions based on BiFeO3 as it suggests that such compositions might also exhibit large extrinsic domain-wall contribution to the piezoelectric response.Comment: 38 pages, 11 figure

    Mechanochemical synthesis of NaNbO3, KNbO3 and K0.5Na0.5NbO3

    Get PDF
    Mechanochemical synthesis of the K0.5Na0.5NbO3 solid solution (KNN) is studied. In order to explore the mechanochemical interactions between the constituents in the Na2CO3 - K2CO3 - Nb2O5 system, NaNbO3 and KNbO3 as the boundary compositions of the KNN solid solution are also studied. It has been shown that NaNbO3 can be prepared by a single-step mechanochemical synthesis, while in the case of K2CO3 and Nb2O5, and Na2CO3, K2CO3 and Nb2O5 mixtures, only amorphisation occurs even after prolonged milling

    Electric-field-induced non-ergodic relaxor to ferroelectric transition in BiFeO3-xSrTiO3 ceramics

    Full text link
    While BiFeO3-based solid solutions show great promise for applications in energy conversion and storage, realizing this promise necessitates understanding the structure-property relationship in particular pertaining to the relaxor-like characteristics often exhibited by solid solutions with polar-to-non-polar morphotropic phase boundaries. To this end, we investigated the role of the compositionally-driven relaxor state in (100-x)BiFeO3-xSrTiO3 [BFO-xSTO], via in situ synchrotron X-ray diffraction under bipolar electric-field cycling. The electric-field induced changes to the crystal structure, phase fraction and domain textures were monitored via the {111}pc, {200}pc, and 1/2{311}pc Bragg peaks. The dynamics of the intensities and positions of the (111) and (11-1) reflections reveal an initial non-ergodic regime followed by long-range ferroelectric ordering after extended poling cycles. The increased degree of random multi-site occupation in BFO-42STO compared to BFO-35STO is correlated with an increase of the critical electric field needed to induce the non-ergodic-to-ferroelectric transition, and a decrease in the degree of domain reorientation. Although both compositions show an irreversible transition to a long-range ferroelectric state, our results suggest that the weaker ferroelectric response in BFO-42STO is related to an increase in ergodicity. This, in turn, serves to guide the development of BFO-based systems into promising platform for further property engineering towards specific capacitor applications

    Large electric-field induced strain in BiFeO3 ceramics

    Get PDF
    Large bipolar strain of up to 0.36% (peak-to-peak value) was measured in BiFeO3 ceramics at low frequency (0.1 Hz) and large amplitude (140 kV/cm) of the driving field. This strain is comparable to that achievable in highly efficient Pb-based perovskite ceramics, such as Pb(Zr,Ti)O3 and Pb(Mg,Nb)O3-PbTiO3. The strain showed a strong dependence on the field frequency and is likely largely associated with domain switching involving predominantly non-180{\deg} domain walls. In addition, rearrangement of charged defects by applying electric field of low frequency depins these domain walls, resulting in a more efficient switching and, consequently, an increased response

    Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics

    Get PDF
    Lead-free piezoceramics with the composition 0.7(Bi1-xNdx)FeO3-0.3BaTiO3+0.1wt% MnO2 (BNxF-BT) were prepared using a conventional solid state route. X-ray diffraction and temperature dependent permittivity measurements indicated a transition from a composition lying at a morphotropic phase boundary (MPB) to a pseudocubic phase as a function of Nd concentration. The highest maximum strain (S max ∼0.2% at 60kV/cm) and effective piezoelectric coefficient (d 33*=333 pm/V) were obtained at room temperature for the composition BN0.02F-BT. The decrease in remanent polarization (P r) and Berlincourt d 33 with increase in Nd concentration can be attributed to the coexistence of ferroelectric and relaxor phases. In-situ polarisation and strain measurements revealed an increase in Pr and d 33* with temperature and a reduction in the coercive field E C. Presumably this behavior is due to a combination of thermally activated domain wall motion and lowering of the activation energy for a field induced relaxor-ferroelectric transition, as the Curie maximum is approache

    Quenching-assisted actuation mechanisms in core-shell structured BiFeO3-BaTiO3 piezoceramics

    Get PDF
    Electromechanical actuation in piezoceramics is usually enhanced by creating chemically homogeneous materials with structurally heterogeneous morphotropic phase boundaries, leading to abrupt changes in ion displacement directions within the perovskite unit cell. In the present study, an alternative mechanism to enhance electromechanical coupling is found in both chemically and structurally heterogeneous BiFeO3-BaTiO3 lead-free piezoceramics. Such a mechanism is observed in a composition exhibiting core-shell type microstructure, associated with donor-type substitution of Ti4+ for Fe3+, and is primarily activated by thermal quenching treatment. Here, we describe the use of in situ high-energy synchrotron X-ray powder diffraction upon the application of a high electric field to directly monitor the ferroelectric and elastic interactions between these composite-like components, formed as core and shell regions within grains. Translational short or long-range ordering is observed in the BiFeO3-depleted shell regions which undergo significant structural alterations from pseudocubic Pm3m relaxor-ferroelectric in slow-cooled ceramics to rhombohedral R3c or R3m with long-range ferroelectric order in the quenched state. The strain contributions from each component are calculated, leading to the conclusion that the total macroscopic strain arises predominantly from the transformed shell after quenching. Such observations are also complemented by investigations of microstructure and electrical properties, including ferroelectric behaviour and temperature-dependent dielectric properties

    Frequency-dependent decoupling of domain-wall motion and lattice strain in bismuth ferrite

    Get PDF
    Dynamics of domain walls are among the main features that control strain mechanisms in ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroelectrics. In situ X-ray diffraction was used to separate the electric-field-induced lattice strain and strain due to displacements of non-180° domain walls in polycrystalline BiFeO3 over a wide frequency range. These piezoelectric strain mechanisms have opposing trends as a function of frequency. The lattice strain increases with increasing frequency, showing negative piezoelectric phase angle (i.e., strain leads the electric field), an unusual feature so far demonstrated only in the total macroscopic piezoelectric response. Domain-wall motion exhibits the opposite behaviour, it decreases in magnitude with increasing frequency, showing more common positive piezoelectric phase angle (i.e., strain lags behind the electric field). Charge redistribution at conducting domain walls, oriented differently in different grain families, is demonstrated to be the cause
    corecore