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Frequency-dependent decoupling of domain-wall
motion and lattice strain in bismuth ferrite
Lisha Liu1, Tadej Rojac2, Dragan Damjanovic 3, Marco Di Michiel4 & John Daniels1

Dynamics of domain walls are among the main features that control strain mechanisms in

ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric

behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroelectrics. In

situ X-ray diffraction was used to separate the electric-field-induced lattice strain and strain

due to displacements of non-180° domain walls in polycrystalline BiFeO3 over a wide fre-

quency range. These piezoelectric strain mechanisms have opposing trends as a function of

frequency. The lattice strain increases with increasing frequency, showing negative piezo-

electric phase angle (i.e., strain leads the electric field), an unusual feature so far demon-

strated only in the total macroscopic piezoelectric response. Domain-wall motion exhibits the

opposite behaviour, it decreases in magnitude with increasing frequency, showing more

common positive piezoelectric phase angle (i.e., strain lags behind the electric field). Charge

redistribution at conducting domain walls, oriented differently in different grain families, is

demonstrated to be the cause.
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Ferroic domain walls are naturally occurring nanoscale
interfaces that can possess distinct properties from their
parent materials1–3. Due to their length-scale, they have

generated great interest for applications such as domain-wall
nanoelectronics2–6. The ferroelectric material BiFeO3 has been
demonstrated to possess enhanced electrical conductivity at
domain walls (relative to the inner domain away from the
domain walls)2. This material also displays Maxwell–Wagner-
like frequency dispersion in its macroscopic piezoelectric
response7. This dispersion is different from a prototypical fre-
quency dependent behaviour of the piezoelectric coefficient in
classical ferroelectric materials, such as soft Pb(ZrxTi1−x)O3

(PZT). In PZT, the piezoelectric response exhibits a linear-
logarithmic dependence, that is interpreted by field-
induced motion of ferroelectric and ferroelastic domain
walls in a medium with random pinning centres8. The
Maxwell–Wagner-like frequency dispersion in bulk polycrystal-
line BiFeO3 has been suggested to be originated from the con-
ductive domain walls7.

Maxwell–Wagner-like dispersion of the piezoelectric coeffi-
cient, similar to that shown for BiFeO3, has been previously
observed in polymer–polymer and polymer–ferroelectric com-
posites9–11 and several ferroelectrics with Aurivillius structures12.
The Maxwell–Wagner effect13, i.e., charge accumulation and its
decay at interfaces between constituent components with differ-
ent dielectric and electric conduction properties inside a material,
can be easily understood for layered Aurivillius structures with
strongly anisotropic conductivity and in heterogeneous systems
such as composites12. However, in polycrystalline ferroelectrics
with perovskite structures such as BiFeO3, where sig-
nificant anisotropy in the bulk conductivity is not expected, the
reasons for Maxwell–Wagner effects are not so obvious. More-
over, the macroscopic Maxwell–Wagner-like piezoelectric dis-
persion in BiFeO3

7 is unique from that previously observed in
other materials. This reflects in the remarkable nonlinearity with
respect to the driving field amplitude at low frequencies (<10 Hz)
and the negative piezoelectric phase angle (phase leading) at weak
fields (i.e., the piezoelectric strain response leads the driving
electric field). Pivotal to future applications not only of BiFeO3

but also other oxides exhibiting domain wall conduction is a
thorough understanding of the origins of these behaviours and
their relation to conductive domain walls.

In polycrystalline ferroelectric materials, the converse piezo-
electric response to an applied electric field has its origin in
several structural features, for example, small displacements of
atoms under external fields in the crystal unit cell, i.e., the lattice
strain, motion of non-180° domain walls resulting in a change in
ferroelectric/ferroelastic domain texture, and electric-field-
induced phase transformations. Methods for quantification of
lattice and domain wall motion induced strains have been pre-
viously used to investigate the strain response of polycrystalline
materials14,15. Unlike thin films16, bulk BiFeO3 does not undergo
crystallographic phase transformations under fields approaching
the breakdown field of the material17 and thus strain due to lattice
distortion and motion of non-180° domain walls are the majority
contributors to its macroscopic piezoelectric response. These
strain mechanisms in other ferroelectrics, as observed by in situ
X-ray diffraction (XRD) field-dependent measurement on PZT
and PbTiO3–BiScO3, are considered to be interdependent and
coupled through intergranular elastic constraints between
neighbouring grains or within clusters of grains18–20. Reports on
the frequency dispersion of individual strain mechanisms are
limited. Previous work on PZT21 and 36%BiScO3–64%PbTiO3

22

materials showed decreased domain wall motion with increasing
frequency. However, lattice strain is either not provided or is
independent of frequency.

Here we demonstrate by using time-resolved in situ XRD and
analytical modelling that the distinct frequency dependent pie-
zoelectric behaviour in polycrystalline BiFeO3 is due to con-
ducting domain walls. By experimentally separating the lattice
strain from the change in non-180° domain texture over the
frequency range from 0.01 to 1000 Hz, we show that the two
strain mechanisms in different grain orientations are decoupled
as a function of frequency, meaning that the amplitudes of these
two strain mechanisms have opposite trends with respect to
variation in driving frequency. Surprisingly, the lattice strain
increases in magnitude with increasing frequency for grains with
a {100}pc direction aligned with the electric field, showing unusual
negative piezoelectric phase angle and thus a strain response that
leads the external field. This is the first direct observation of a
strain mechanism showing phase leading behaviour using the
XRD method. In contrast, the strain coming from non-180°
domain wall motion in {111}pc grains decreases with increasing
frequency, showing a more common positive piezoelectric phase
angle, meaning lagging of the strain response to the external
electric field. In addition to experimental in situ XRD data, we
present here an analytical model based on the domain wall
conductivity to show the origin of the microscopic strain
decoupling as a function of frequency and negative phase angle of
the piezoelectric response of BiFeO3. Charge redistribution at the
domain walls, oriented differently with respect to the applied field
vector in different grain families, causes complex time-dependent
internal electric fields, effectively resulting in redistribution of
these fields in different grains. The revealed mechanism may play
an important role in ferroelectrics exhibiting significant local
variations in electrical conductivity, particularly those character-
ized by enhanced conduction at domain walls, and thus offers a
new approach based on conducting domain walls for influencing
the electromechanical properties of ferroelectrics.

Results
In situ time-resolved XRD. Figure 1a displays a representative
diffraction pattern integrated from the diffraction image obtained
during in situ sub-coercive electric-field cycling on poled BiFeO3

samples (see Methods). Figure 1b–d shows the profile fitting of
selected diffraction peaks using Gaussian functions. No impurity
phase was found within the detection limit of the instrument,
confirming the high phase purity of the material. The fitted
parameters including position of individual peaks (θhkl) and
111pc/11�1pc peak intensities, which vary upon field application,
were utilized to obtain lattice strains, εhkl, and non-180° domain
texture, f111, during the electric-field cycling using following
equations:

εhkl ¼ � θEhkl � θ0hkl
� ��cotθ0hkl ð1Þ

f111 ¼ 4

IE111
I0111

IE111
I0111

þ 3 � IE11�1I0
11�1

ð2Þ

where the superscript indicates the state of external electric field
application (either zero or non-zero field E) and subscript denotes
the crystallographic hkl plane. Equation (2) is a multiple of a
random distribution (MRD) method used to quantify domain
texture for rhombohedral structures15. In contrast to f111= 1
MRD for as-processed unpoled ceramic, the f111 for the initial
poled state of the measured sample was 2.5 MRD.

Figure 2a–c shows the driving field, 200pc peak position, and
111pc/11�1pc peak intensities during the 1 Hz electric field cycle,
respectively. The calculated lattice strain from peak positions and
f111 from the interchange of intensities, using equations (1) and
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(2), are presented in Fig. 2d and e, respectively. These data are
then fitted with a sinusoidal curve to extract the amplitude
variation of the electric-field-induced lattice strains, εhkl, and
changes of the 111pc domain texture, Δf111, at this specific
frequency (the same procedure is used for all frequencies).
Changes of lattice strains, εhkl, from each individual peak (see
Supplementary Figure 1), were then combined using a weighted
average method to obtain the total lattice strain contribution,

εintrinsic, in the field direction of the sample by the following
equation (3)14:

εintrinsic ¼
X

hkl
fhkl 0ð Þmhklεhkl=

X
hkl

fhkl 0ð Þmhkl ð3Þ

where fhkl(0) is the domain texture along the field direction (i.e.,
when the angle between applied field vector, E, and scattering
vector, q, is 0°) and can be measured using diffraction
techniques15,23. The multiplicity factor of (hkl) reflection, mhkl,
is the corresponding total number of identically spaced planes.

Figure 3a–c shows in situ total lattice strain, εintrinsic, change in
non-180° domain texture, Δf111, macroscopic strain, εmacro, as
measured from sample surface displacement, and tangent of the
piezoelectric phase angle, tanδ, as a function of frequency
obtained during 6 kVmm−1 unipolar electric-field cycling. The
macroscopic strain is the field response of the whole bulk sample
and thus represents a complex convolution of all strain
mechanisms, including lattice strain and local domain-wall
induced strain from individual grains. Distinct frequency
dispersions of the strains are observed in the measured frequency
range (Fig. 3a, b).

From Fig. 3a, it can be seen that lattice strain (magenta circles)
and change in non-180° domain texture (blue diamonds) are
decoupled as a function of frequency: they show different trends
in their fractional contributions to the macroscopic strain as a
function of frequency. The total lattice strain increases with
increasing frequency of the field, while the change in non-180°
domain texture shows a decrease in magnitude with increasing
frequency. A clear frequency-dependent decoupling of these
strain mechanisms occurs at frequencies below ~10 Hz. For
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Fig. 2 Strain response to sinusoidal electric field. a Sinusoidal electric field, E, demonstrated for the 1 Hz measurement; b 200pc peak position, 2θ;
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frequencies above 10 Hz, the trends with respect to increasing
frequency between the two microscopic strain mechanisms are
still opposite but strain changes are smaller.

As shown in Fig. 3b, the macroscopic strain decreases from
0.039 to 0.015% with increasing frequency from 0.01 to ~3 Hz.
Within experimental error (see Methods), the strain then
stabilizes at 0.017% for frequencies above ~6 Hz. The frequency
below which the lattice strain, change in domain texture and
macrostrain becomes dispersive, i.e., 10 Hz, is consistent with
previously reported ex situ macroscopic measurements of the
direct and converse piezoelectric response of BiFeO3

7.
As expected for the field used in this experiment (6 kVmm−1,

0.75 Ec)7, Fig. 3c (black squares) shows that the phase angle of the
macroscopic strain is positive (meaning that the strain lags
behind the driving field) and increases as the frequency is
decreased below ~0.3 Hz. For all other frequencies measured
(>0.3 Hz), tanδ is approximately zero within experimental error.
In contrast, the phase angle of the lattice strain is negative for the
majority of the frequency range (meaning that strain leads the

driving field), with its minimum value at approximately 1 Hz
(Fig. 3c, magenta circles). It is worth noting that the negative
phase angle was also observed in the direct d33 measurements at
small unipolar stresses24 and in the converse d33 with bipolar
electric fields when the response is extrapolated to zero field7. At
low stresses and electric fields, the negative phase of both the
direct and converse macroscopic strain can be related to the
observed phase leading of lattice strain directly measured by
in situ XRD here. Increasing driving stresses and fields will
enhance the domain wall displacements, which results in positive
phase angle that then dominates the direct and converse
macroscopic responses. All of these different and mutually
consistent experiments confirm the presence of negative phase
angle in the piezoelectric response of BiFeO3. The reproducibility
of the negative phase angle of the lattice strain over multiple
cycles at frequencies below 1 Hz and over all orientations with
respect to the electric field vector E (i.e., the phase angle of lattice
strain at all angles between the 200pc diffraction vector q and E) at
both low and high frequencies (e.g., 1 and 100 Hz) are
demonstrated in Supplementary Table 1 and Supplementary
Figure 2, respectively.

The phase lagging and phase leading of the macroscopic strain
and microscopic lattice strain with respect to the driving field,
respectively, is demonstrated for the 1 Hz measurement in Fig. 3d.
This unusual behaviour (negative phase angle) is physical for the
piezoelectric response25–27 and it has been observed experimen-
tally in systems where conductivities with different time constants
occur in different regions of a material12. In those cases, the
negative phase angle is a manifestation of the varying electric field
distribution in the system during the electric field cycle.

Maxwell–Wagner analytical model and Rayleigh relationship
calculations. Charge accumulation and redistribution through
local conductive paths in the material can affect the temporal
dependence of internal electric fields, leading to the so-called
Maxwell–Wagner dielectric28 and piezoelectric relaxation12,29.
Such dispersive behaviour was previously observed in the macro-
scopic dielectric30 and piezoelectric response of BiFeO3 ceramics7.
To confirm consistency with these previous results, the dielectric
permittivity and piezoelectric coefficient were measured on a
sample from the same batch as that analysed by the in situ XRD
experiments under the same condition (unipolar 6 kVmm−1 field).
The permittivity was also measured at weaker field amplitude
(bipolar 0.02 kVmm−1). All these results clearly and indepen-
dently confirm a consistent Maxwell–Wagner-like frequency dis-
persion in the dielectric and piezoelectric responses (see
Supplementary Figures 3–5 and detailed discussion thereof).
Considering the above discussion, local regions within the poly-
crystalline matrix that have dispersive mechanisms with different
time constants are likely present in BiFeO3. While this is unex-
pected in a homogeneous phase-pure material with simple per-
ovskite structure where significant anisotropy in the conductivity is
not present, the anisotropy in conductivity, as we show next, may
be caused by the presence of conducting domain walls.

In BiFeO3, enhanced domain wall conductivity with respect to
domain region has been observed in both thin films2 and
ceramics31. Defects are assumed responsible for the domain wall
conductivity by preferentially concentrating in the domain wall
region31. These defects in BiFeO3 ceramic sintered in O2 or air
have been identified as bismuth vacancies and Fe4+ cations
(representing oxidized states of Fe3+ cations). This allows p-type
hopping conduction at domain walls due to electron holes
associated with Fe4+ 31. For the same batch of poled material
analysed by in situ XRD experiments, the enhanced electrical
conductivity at domain walls was confirmed by combined
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Fig. 3 Effect of electric field cycling as a function of frequency. a Calculated
total lattice strain (magenta circles), εintrinsic, using equation (3), and
change in non-180° 111pc domain texture (blue diamonds), Δf111, using
equation (2); b measured in situ macroscopic strain, εmacro, by an optical
displacement sensor coupled to the sample surface during XRD
experiments (see Methods); c tangent of the piezoelectric phase angle,
tanδ, of macroscopic strain (black squares) and lattice strain (magenta
circles) during application of 6 kVmm−1 unipolar sinusoidal electric field, E;
and d time dependence of driving electric field (turquoise triangles),
macroscopic strain (black squares), and lattice strain (magenta circles)
responses demonstrated at 1 Hz, showing lagging (black straight line) and
leading (magenta straight line) between strain and sinusoidal field signals.
The errors of the lattice strain, change of non-180° 111pc domain texture,
macroscopic strain, and phase angle arise from sinusoidal curve fitting on
these responses during application of driving cyclic field
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conductive atomic force microscopy (c-AFM) and piezo-response
force microscopy (PFM) (see Supplementary Figure 6). We thus
propose that the conductivity at domain walls plays a key role in
the observed frequency-dependent strain decoupling, as explained
in the model presented here, though other origins of local
conductivity, such as that at grain boundaries and/or pores, may
also contribute to the effect to some extent7.

Figure 4a, b shows two representative grains that have different
crystallographic orientations in rhombohedral polycrystalline
BiFeO3, i.e., {100}pc and {111}pc, where the directions represent
the crystallographic planes aligned perpendicular to the applied
electric field vector. In this figure, the diffracting planes are
represented by black dashed lines and the domain walls by blue
solid lines. In rhombohedral BiFeO3, 71° domain walls occur on
{101}pc planes and 109° on {100}pc planes32. This means that the
conductive domain walls of the two representative grain families
occur at different angles to the applied field. As an example, Fig. 5
shows one possible orientation of 71° conductive domain walls
occurring on (011)pc planes. These domain walls run parallel to
the applied external electric field vector in the {100}pc oriented
grain family (see Fig. 4 top grain). However, in the {111}pc
oriented grain family, (011)pc planes have an angle of 35.26° with
(111)pc planes (see Fig. 4 bottom grain), so the angle difference of
the conductive path to the applied external electric field vector is
54.74° (Fig. 4a). This difference in the orientation of the
conducting walls between various grain orientations of the
material, with respect to the external field vector, is what is
proposed here to cause a difference in the conductivity between
different grains. The difference in the conductivity is responsible

for the redistribution of the effective field in each grain,
producing Maxwell–Wagner-like frequency dispersion in an
otherwise homogeneous material like BiFeO3.

When an external field is applied, mobile charges in the
domain wall region can redistribute via hole hopping. In the case
of the {100}pc grain family, where the conducting walls are
parallel to the applied field, the driving force for this redistribu-
tion is maximized. However, in the {111}pc grain family the
domain walls are not parallel to the external field and the driving
force is reduced. Thus, the conductivities of two grain families are
different. This process is confirmed by the model which is shown
next.

The redistribution of electric fields in these grains is analogous
to effective fields in circuits where leaky capacitors (i.e., a
capacitor and a resistor in parallel) with different capacitance and
resistivity are connected in series. We largely simplify the case to
a two-grain system as shown in Fig. 4, without considering all
other grain orientations, different domain clusters within grains,
intergranular elastic coupling, the transverse piezoelectric
response and elastic compliance of the grains (see Methods). In
series connection, the external field over the two grains Eapp is the
weighted sum of the field in the individual grains E100 and E111
(Eapp= v100E100+ v111E111, where v100 and v111 is the volume
fraction of each grain), while the charge density at the surface of
different grains is the same (κ100E100= κ111E111), where κhkl is
dielectric permittivity for each grain. Assuming for simplicity that
the only electrical loss mechanism is the conductivity, the
complex permittivity can be expressed as κhkl ¼ κ′hkl � iσhkl=ω,
where σhkl is the conductivity in the grain with hkl orientation and
ω is the angular frequency of the driving field. These expressions
can be used to calculate the effective electric fields for each grain
as a function of the frequency and external field, Eapp (see
Methods).

The effective electric fields can then be used to calculate the
frequency dependent strain, εhkl, in each grain using piezoelectric
equations33:

ε100 ¼ d100E100 ¼ d100 E′
100 � iE′′

100

� � ¼ ε′100 � iε′′100 ð4Þ

ε111 ¼ d111E111 ¼ d111 E′
111 � iE′′

111

� � ¼ ε′111 � iε′′111 ð5Þ

The subscripts, hkl, represent the grain orientation with respect
to the external field vector. E′ and E″ are the real and imaginary
components of the electric field, respectively, d100 and d111 are the
piezoelectric coefficients incorporating the dominant strain
mechanisms for {100}pc and {111}pc oriented grains. Due to the
orientation of the grain, d100 is inhibited from having a domain
wall motion component, as the spontaneous strain resolved along
the field direction is always the same for all domain orientations.
Meanwhile, d111 is likely to be dominated by the domain wall
motion component and its field and frequency dependence is not
considered in equation (5), but is incorporated in a later stage (see
equation (8)). The resulting strain is also complex, consisting of a
real (ε′) and an imaginary component (ε″).

The phase angles of the strains in different grains can be
obtained as:

tanδε100 ¼ ε′′100=ε
′
100 ¼ E′′

100=E
′
100 ð6Þ

tanδε111 ¼ ε′′111=ε
′
111 ¼ E′′

111=E
′
111 ð7Þ

Adopting an external electric field Eapp of 6 kVmm−1, d100 and
d111 of 45 and 30 pm V−1, relative permittivity values of κ100= 40
and κ111= 30 and relative conductivity values (with respect to the

71° domian walls
on (011)pc planes

71° domian walls
on (011)pc planes

100pc plane

11–1pc plane

111pc plane

90°

Eapp

54.74°

35.26°

a b

Fig. 4 Schematic of two representative grains in poled BiFeO3. a The
diffraction planes and orientations of 71° domain walls, occurring on (011)pc
planes, in {100}pc and {111}pc grains. In {100}pc grain (top grain), the 71°
domain wall (solid blue lines) is perpendicular to the 100pc diffracting
planes (black dashed line). In the {111}pc grain, the 71° domain walls
separate 111pc and 11�1pc diffracting planes and form an angle of 35.26°. The
angle between 71° domain walls in {100}pc and {111}pc grains is 54.74°;
b charge distribution on conductive domain walls under applied external
electric field, Eapp= E0sin(ωt). Charge redistribution rate is different for
grains with different crystallographic orientations, i.e., {100}pc and {111}pc.
Their dielectric permittivities, electrical conductivities and piezoelectric
coefficients are thus different, represented by κ100 and κ111, σ100 and σ111, and
d100 and d111, respectively. This will result in different effective fields in
individual grains, represented by E100 and E111. The grain elongations upon
field application, indicated by the solid black shapes, are due to the
piezoelectric effect in the {100}pc grain and non-180° domain wall motion
in the {111}pc grain
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vaccum permittivity) σ100= 250 and σ111= 100 (see Supplemen-
tary Figure 7 and Methods), results of the calculations for
different grains from this analytical model are shown in Fig. 5.
Figure 5a shows the calculated effective electric fields (see
Methods), while Fig. 5b shows the strain response of the two
grain orientations over the frequency range of interest using
equations (4) and (5). The analytical model reproduces the
frequency-dependent decoupling of strains in the two grain
families (Fig. 5b; 100pc and 111pc strains have opposite trends
with decreasing frequency below ~10 Hz), caused by the effective
field redistribution (Fig. 5a). The corresponding phase angle of
strain response in each grain can be obtained by equations (6)
and (7) as given in Fig. 5c. The phase angle shows a negative peak
for the {100}pc grain and a positive peak for the {111}pc grain
(Fig. 5c). This highlights the leading and lagging of individual
strain mechanisms relative to the external electric field. One
example of this leading and lagging during an individual electric
field cycle is calculated for 1 Hz driving field in Fig. 5d,
comparable to the experimental data shown in Figs. 2d, e and 3d.

At low frequencies, the experimental data, Fig. 3b, c, show a
large increase in macroscopic strain magnitude and positive phase
angle that is not fully accounted for in the Maxwell–Wagner type
analytical model. This discrepancy is explained by the frequency
dependence of the non-linearity in the piezoelectric response

shown in Supplementary Figure 8. Below 0.3 Hz, the non-
linearity is significant, increasing with decreasing frequency, while
at frequencies above 1 Hz the non-linearity is suppressed. This
explains the increase of macroscopic strain at low frequencies
(Fig. 3b, <1 Hz). The reason for this behaviour is that domain wall
conductivity which we have shown to be active below 1 Hz allows
depinning of domain walls, increasing their mobility as shown in
ref. 7. This enhanced domain wall motion at low frequencies
causes an increasing phase angle as estimated using equation34:

tanδR � δR ¼ 4α fð ÞEmax

3πd33
ð8Þ

This equation is derived from Rayleigh relationships that
describe non-linear and hysteretic movement of domain walls,
where α is the frequency-dependent Rayleigh irreversible para-
meter, Emax is the applied field amplitude and d33 is the
macroscopic piezoelectric coefficient. The calculated Rayleigh
phase angle from experimental α (see Supplementary Figure 8) is
shown in Fig. 5e. This calculation follows closely to the observed
increase in phase angle of the macroscopic strain shown in Fig. 3c.

The Maxwell–Wagner analytical model and Rayleigh relation-
ship applied at low frequencies reproduce the key features of the
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experimental data over the full frequency range measured, i.e.,
decoupling of strain mechanisms with frequency, and phase
leading of the lattice strain. The frequency-dependent decoupling
of strains shown here is counter-intuitive to the usually assumed
interdependence and continuous grain interactions, that cause
coupling of the strain mechanisms by intergranular stress
between neighbouring grains18,19. More specifically, the fre-
quency dispersion of lattice strain (decrease of lattice strain with
decreasing frequency) is distinct from previous reports (fre-
quency-independent lattice strain)22. Based on the above
analytical model, this difference is explained by domain walls in
BiFeO3 acting as conductive paths. Therefore, shielding of the
applied external electric field occurs in given grain families,
especially at lower frequencies with more pronounced domain
wall motion and charge migration, resulting in the observed
decrease of lattice strain with decreasing frequency. Moreover,
this phenomenon is accompanied by the phase of the lattice strain
leading the external electric field.

Discussions
Electric-field-induced microscopic strain mechanisms and the
macroscopic strain of polycrystalline BiFeO3 have been studied as a
function of frequency at sub-coercive field values to provide insight
to the origin of Maxwell–Wagner-like dispersion in its converse
piezoelectric response. Two features of the strain response of
BiFeO3 are observed, i.e., the frequency-dependent decoupling of
strain mechanisms (lattice strain and local domain texture) in
different grain families and the negative phase angle (phase lead-
ing) of the electric-field-induced lattice strain of {100}pc oriented
grains. The latter is the first XRD observation of strain response
temporally leading the external stimulus. The reproducibility of
these unusual behaviours was confirmed by repeating measure-
ments at 20Hz on single samples, and over the full frequency
range on multiple samples (Supplementary Table 2, Supplementary
Figures 9, 10). These measurements show that grain interactions in
the BiFeO3 ceramic are stable during sub-coercive electric-field
cycling. Breaking of grain-scale mechanical coupling, for example

by cracking, would be expected to cause large changes in response
when measurements are repeated at the same frequencies on single
samples and is thus excluded here as a reason for frequency-
dependent decoupling of microscopic strain mechanisms.

Analytical modelling and the totality of the experimental data
show that the Maxwell–Wagner relaxation in the converse pie-
zoelectric response can be due to conductive domain walls in
BiFeO3 ceramic. Local variations in conductivity, related to
orientation of domain walls with respect to the external field in
grains, modify the internal field distribution in different grain
orientation families. Given the hypothesis that domain wall
conductivity is the main reason for the Maxwell–Wagner-like
dispersion, it is foreseeable that the frequency dispersion of pie-
zoelectric properties in BiFeO3 can be highly sensitive to pro-
cessing conditions that impact both defect type and concentration
as well as microstructural features. The sensitivity of defect for-
mation when the material is processed under different O2 partial
pressures and sintering temperatures is known to directly influ-
ence the domain wall conductivity in BiFeO3 ceramics and thin
films31,35. In addition, grain boundaries and pore surfaces, may
show conductive properties. However, contributions from these
regions are expected to be isotropic and thus they cannot explain
the difference in the response magnitude observed in different
grain orientation families. Different processing conditions or
sintering temperatures would also result in variations in grain size
and domain structures, which according to our model, are also
expected to affect the frequency dispersion of the piezoelectric
response. In our case, to test the reproducibility of XRD mea-
surements and the observed increase of lattice strain with
increasing frequency, samples were sintered in a narrow tem-
perature window (between 745 and 780 °C), resulting in similar
grain sizes and domain configurations (see Supplementary Fig-
ures 11, 12). Accordingly, the frequency-dependent behaviour of
these samples is qualitatively similar, showing good reproduci-
bility of the in situ results (Supplementary Figure 13).

The present findings help further understanding of grain-scale
mechanics of polycrystalline piezoelectric materials. It shows that
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control of domain wall conductivity, for example by adjusting
processing atmospheres, may tune the properties of bulk BiFeO3.
This plays a role in influencing its macroscopic properties in a far
more diverse and important manner than so far considered.
Domain wall conductivity has been observed in numerous fer-
roelectric materials in addition to BiFeO3

2,35, including BaTiO3

crystals36, KTiOPO4 crystals37, YMnO3 single crystals38,39,
ErMnO3 crystals40, LiNbO3 single crystals41, and Pb(Zr0.2Ti0.8)O3

thin films42. It would be interesting to see if those materials can
also show the same frequency-dependent decoupling between the
lattice and non-180° domain wall motion generated strain as in
BiFeO3. Potential novel applications of conducting domain walls
in nanoelectronics have been discussed3 and proposed4 in the
literature. Our findings add a new dimension to nanoengineering
conductive domain walls, and thus further the development of
domain-wall-based nanoelectronics in addition to providing a
novel control mechanism for the frequency dependent properties
of bulk materials.

Methods
In situ experiments. High-purity bulk BiFeO3 ceramics were prepared by the solid
state method utilizing reactive sintering of a mixture of Bi2O3 (Alfa Aesar,
99.999%) and Fe2O3 (Alfa Aesar, 99.998%) raw powders. A small amount of Co3O4

(99%, Alfa Aesar), corresponding to 0.1 wt% of Co, was added to the mixture to
reduce the electrical conductivity. The powder was then pressed to pellets uni-
axially at 150MPa. The obtained green pellet was then reactively sintered using
tube furnace under different temperatures (745, 760 and 780 °C) to rule out sample
variability during in situ XRD experiments.

The as-sintered ceramics were prepared into disks of 8 mm diameter and 0.5mm
thickness and electroded before being poled using a 12 kVmm−1 electric field for 30
min. The measured d33 values after poling of the samples were 42 ± 2 pCN−1. Poled
BiFeO3 ceramics were then cut to dimensions of 1 mm×mm× 0.5mm suitable for
the in situ XRD measurements. The d33 of the samples was checked after cutting to
ensure no depoling occurred. Sub-coercive electric field cycling experiments were
performed with a unipolar sinusoidal field of amplitude 6 kVmm−1 (0.75 Ec) in the
poling direction at the following frequencies: 1000, 300, 100, 45, 20, 14, 10, 6, 3, 1,
0.3, 0.1, 0.03, and 0.01 Hz. To obtain the required diffraction statistics for different
frequencies, the measured number of cycles for the above frequencies were 2000,
600, 200, 90, 20, 20, 20, 10, 10, 10, 7, 3, 1 and 1, respectively. In general, frequencies
where macroscopic strain data was measured for a larger number of cycles have
smaller errors, as the fitting of the amplitude and phase could be performed more
accurately. After the full cycling sequence, 20 Hz was selected to confirm the
repeatability of the measured data and exclude radiation damage effects caused by
the X-ray beam. Three batches (in total 17 samples) sintered under different
temperatures (745, 760 and 780 °C) were used to carry out the in situ experiments.

High-energy XRD experiments were carried out at beamline ID15A of The
European Synchrotron Radiation Facility. A schematic of the experimental setup
for ID15A is shown in Fig. 6. Two X-ray beam energies were used for the
measurements, 78.5 keV (0.15794 Å) and 75 keV (0.16531 Å). A beam size of
approximately 200 μm× 200 μm was used.

The samples were mounted in a specifically designed chamber that allows it to
be bathed in silicon oil during data collection while the electric field is applied43.
The diffraction images were collected in the forward direction (transmission
geometry) using a Dectris Pilatus3 X CdTe detector. Cyclic electric fields of
different frequencies were generated by a function generator (Fluke PM5136) and
amplified using a Trek 10/10 high voltage amplifier. This applied field was
hardware synchronised with the framing of the detector diffraction images, such
that diffraction information was obtained at specific time points within the electric
field cycle. Detector parameters, including sample to detector distances, beam
centre and detector tilts, were calibrated using standard cerium dioxide (NIST
standard CeO2) in Fit2D44. In this scattering geometry, each diffraction image
contains full orientation dependent data of the scattering vector, q, angle with
respect to applied electric field vector, E. Segments of the measured images were
then integrated into sequential one-dimensional diffraction patterns using the
calibrated detector information. Peak fitting was done sequentially for further
interpretation in Igor Pro 7.0. Errors arising from the fitting of diffraction peaks
were propagated through subsequent calculations.

Simultaneously, in situ macroscopic strain was measured using an optical
displacement sensor coupled to the top surfaces of the sample. The displacement of
the sample surface was used to calculate the macroscopic strain.

Maxwell–Wagner analytical model and its parameters. The Maxwell–Wagner
analytical model is a simplification of the real case. To ease the otherwise complex
interpretation of field redistribution and microscopic strains decoupling in the
polycrystalline matrix of BiFeO3, we did not take into account Rayleigh-like
behaviour related to domain wall displacements, mechanical boundary conditions

and elastic anisotropy, or effects arising from the transverse piezoelectric response.
The Rayleigh model is used, however, to interpret the large nonlinear increase in
piezoelectric response at low frequencies. Electro-mechanical coupling among the
grains in polycrystalline materials can be in principle added for a more complex
and realistic model, for example similar to the one that has been reported by Turik
et al.29. Other grain orientations, distributions of conductivities, fractional
dynamics45 or empirical Havriliak Negami equations could be considered for the
complex permittivity of this system. However, the simplified model presented here
captures qualitatively very well all essential features of the experimentally observed
macroscopic behaviour.

The parameters involved in the analytical model include the dielectric
permittivity κhkl, the electric conductivity σhkl, the piezoelectric coefficients dhkl, and
volume fraction vhkl of two grains with {111}pc and {100}pc orientation with respect
to the external field, where hkl represents the grain orientation. These values should
reflect realistic physical values for BiFeO3. For {111}pc grain, we use the intrinsic
GHz relative dielectric permittivity of BiFeO3, which is ~30 as reported
previously32. For {100}pc grains, a higher relative permittivity is used, in this case a
value of 40 is adopted for the model, considering that the transverse permittivity of
a number of rhombohedral ferroelectrics with a 3 m symmetry (isostructural with
BiFeO3) is higher than the longitudinal permittivity46. The as-reported bulk
electrical conductivity of BiFeO3 ceramics and single crystals at room temperature
are spread over several orders of magnitude, typically between ~10−2 and ~10−10

Ω−1 m−1 32,47–49. The conductivity in the range of 10−9–10−10Ω−1 m−1 was used
in the calculations, consistent with the measured bulk electrical conductivity of our
BiFeO3 sample as shown in Supplementary Figure 7, and can reproduce the main
features of the microscopic strains (the data shown in the main paper are relative
conductivity of σ111= 100 and σ100= 250 for {111}pc grain and {100}pc grain,
respectively). The piezoelectric coefficient of 30 pm V−1 is used for {111}pc grain,
and 45 pm V−1 is used for {100}pc grain. A higher d33 value is used for the {100}pc
grain relative to the {111}pc grain for the same reasons as explained for the relative
dielectric permittivity.

Redistributed electric fields in different grain families. The effective electric
fields in different grain families, when we consider the ferroelectric material like
BiFeO3 exposed to an external electric field, is analogue to field redistribution in
leaky capacitors with different capacitance (Ci) and resistivity (Ri) connected in
series. The applied external voltage is Uapp and the field is Eapp. Ui and Ei are the
voltage and effective field on each capacitor. One further takes into account the
fraction of different types of capacitance, vi (corresponding to the fraction volume
of each grain family), which is proportional to their thickness li if the effective area
of all capacitors is the same. For series connection, the charge density (Di) on each
capacitor is equal, and the external voltage is the sum of the voltages on all
capacitors. One obtains the following equations:

D1 ¼ κ1E1 ¼ κ2E2 ¼ D2 ð9Þ

U1 þ U2 ¼ E1l1 þ E2 l2 ¼ Eapp l1 þ l2ð Þ ¼ Uapp ð10Þ

Ci ¼ εi
A
li

ð11Þ

v1 ¼
l1

l1 þ l2
ð12Þ

v2 ¼
l2

l1 þ l2
ð13Þ

where κi is dielectric permittivity of the capacitors. The electric fields on
individual capacitors are thus:

E1 ¼
U1

l1
¼ κ2

v2κ1 þ v1κ2
Eapp ð14Þ

E2 ¼
U2

l2
¼ κ1

v2κ1 þ v1κ2
Eapp ð15Þ

Considering alternating external electric field with angular frequency ω, and
adding complex permittivity of the weakly conducting material as:

κi ¼ κi′� iσ i=ω ð16Þ

one gets the complex form for the effective field in each grain (capacitor 1
corresponds to {100}pc grain family, and capacitor 2 corresponds to {111}pc grain

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07363-y

8 NATURE COMMUNICATIONS |          (2018) 9:4928 | DOI: 10.1038/s41467-018-07363-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


family). Finally, the redistributed field in different grain families is obtained as:

E100 ¼
κ111

v111κ100 þ v100κ111
Eapp

¼ τκ′111ω
2 þ σ111

1þ ω2τ2ð Þ v100σ111 þ v111σ100ð Þ
�

�i
τωσ111 � ωκ′111

1þ ω2τ2ð Þ v100σ111 þ v111σ100ð Þ
�
Eapp

¼ E′
100 � iE′′

100

ð17Þ

E111 ¼
κ100

v111κ100 þ v100κ111
Eapp

¼ τκ′100ω
2 þ σ100

1þ ω2τ2ð Þ v100σ111 þ v111σ100ð Þ
�

�i
τωσ100 � ωκ′100

1þ ω2τ2ð Þ v100σ111 þ v111σ100ð Þ
�
Eapp

¼ E′
111 � iE′′

111

ð18Þ

The subscript represents grain orientation with respect to the external field

vector, τ ¼ v100κ
′
111þv111κ

′
100

v100σ111þv111σ100
is the relaxation time of the two-grain system, and E′

hkl

and E′′
hkl are the real and imaginary components of the effective electric fields,

respectively.

Data availability
The data that support the findings of this study are available from the authors on
request.
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