75 research outputs found

    Targeting of MuLV Gag to the plasma membrane is mediated by PI(4,5)P2 and PhosphatidylSerine

    Get PDF
    Oral presentationInternational audienceMembrane targeting by the modern human immunodeficiency viruses is dependent on the plasma membrane-located phospholipid PI(4,5)P2. In order to determine if evolutionarily distant retroviruses are targeted by a similar mechanism, we generated mutant Gag constructs in the matrix (MA) domain of the Murine Leukemia Virus (MuLV) and examined their binding to membrane models and phenotypes in cell culture. Mutations in the MA polybasic region altered Gag localization, membrane binding and virion production. In addition, we show that MA binds with good affinity to all the phosphatidylinositol phosphates but displays a strong specificity for PI(4,5)P2 only if enhanced by phophatidylserine. Virus production was strongly impaired by PI(4,5)P2 depletion under 5ptaseIV overexpression. Our results suggest that the N-terminal polybasic region of MA is essential for Gag targeting to the plasma membrane and Gag cellular trafficking. The binding of the MA domain to PI(4,5)P2 appears to be a conserved feature among retroviruses, despite the fact that the MuLV-MA domain is structurally different from that of HIV-1 and -2 and lacks a readily identifiable PI(4,5)P2 binding cleft

    IDCases

    Get PDF
    Although bacterial vaginosis is the most common and benign vaginal infection worldwide, some cases of severe acute infections have been described in the literature. We report the case of a 57-year-old French female who developed a life-threatening postoperative peritonitis after a total hysterectomy with adnexectomy in the context of the removal of leiomyosarcoma. The microbiological analysis of the peritoneal fluid identified Gardnerella vaginalis and Atobopium vaginae. The final diagnosis was a septic shock induced by an early onset peritonitis caused by Gardnerella vaginalis and Atobopium vaginae. The normal flora of the genital area could lead to a serious life threatening postoperative infection and should always be in the differential diagnosis

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly

    Get PDF
    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly

    A low proportion of HBeAg among HBsAg-positive pregnant women with known HIV status could suggest low perinatal transmission of HBV in Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transmission of hepatitis B virus (HBV) from HBV-positive mothers to their infants is common and usually occurs when the mother is hepatitis B e antigen (HBeAg) positive and/or has a high HBV DNA load. In this study, we determined the prevalence of hepatitis B surface antigen (HBsAg) and HBeAg among pregnant women with known HIV status.</p> <p>Findings</p> <p>A total of 650 pregnant women with a mean age of 26.2 years including 301 HIV-positives and 349 HIV-negatives were screened for HBsAg (Monolisa AgHBs Plus Biorad, France). Among the HBsAg-positives, HBeAg and anti-HBe were tested (Monolisa Ag HBe Plus Biorad, France). Overall, 51 (7.85%) were positive for HBsAg. The prevalence of HBsAg was not statistically different between HIV-positive and HIV-negative pregnant women [28/301 (9.3%) vs 23/349 (6.59%); p = 0.2]. None of the 45 HBsAg-positive samples was reactive for HBeAg.</p> <p>Conclusions</p> <p>Our study indicates a high prevalence of HBsAg with very low proportion of HBeAg in Cameroonian pregnant women. Since perinatal transmission of HBV is mostly effective when the mother is also HBeAg-positive, our data could suggest that perinatal transmissions play a minor role in HBV prevalence in Cameroon. In line with previous African studies, these findings further suggests that horizontal transmission could be the most common mechanism of HBV infections in Cameroon.</p

    IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells

    Get PDF
    Chronic hepatitis C virus (HCV) infection is characterized by progressive hepatic fibrosis, a process dependent on monocyte recruitment and accumulation into the liver. The mediators expressed in chronically injured liver that control the differentiation of human monocytes into profibrotic macrophages (Mφ) remain poorly defined. We report that chronically HCV-infected patients with high fibrosis stages have higher serum levels of macrophage colony-stimulating factor (M-CSF) and interleukin (IL)−34 than HCV-infected patients with lower fibrosis stages and healthy subjects. Immunohistochemistry reveals an intense expression of IL-34 and M-CSF by hepatocytes around liver lesions. In addition, HCV infection and inflammatory cytokines enhance the in vitro production of IL-34 and M-CSF by hepatocytes. We next analyzed the acquisition of profibrotic properties by Mφ generated with M-CSF (M-CSF-Mφ) or IL-34 (IL-34-Mφ). M-CSF and IL-34 up-regulate the expression, by differentiating monocytes, of chemokine (C-C motif) ligand (CCL)2, CCL4, C-C chemokine receptor (CCR)1, and CCR5, which are involved in monocyte recruitment/Mφ accumulation in liver lesions. M-CSF-Mφ and IL-34-Mφ also express the hepatic stellate cell (HSC) activators, platelet-derived growth factor, transforming growth factor beta, and galectin-3. IL-34-Mφ and M-CSF-Mφ induce type I collagen synthesis by HSCs, the main collagen-producing cells in liver fibrosis. IL-13, whose expression correlates with the fibrosis stage in HCV-infected patients, decreases the expression of the collagenase, matrix metalloproteinase 1, by IL-34-Mφ and M-CSF-Mφ, thereby enhancing collagen synthesis. By inhibiting the production of interferon-gamma (IFN-γ) by activated natural killer cells, IL-34-Mφ and M-CSF-Mφ prevent the IFN-γ-induced killing of HSCs. Conclusion: These results identify M-CSF and IL-34 as potent profibrotic factors in HCV liver fibrosis

    IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells

    Get PDF
    Objective Interleukin-26 (IL-26) is a member of the IL-10 cytokine family, first discovered based on its peculiar expression by virus-transformed T cells. IL-26 is overexpressed in chronic inflammation (rheumatoid arthritis and Crohn’s disease) and induces proinflammatory cytokines by myeloid cells and some epithelial cells. We thus investigated the expression and potential role of IL-26 in chronic HCV infection, a pathology associated with chronic inflammation.Design IL-26 was quantified in a cohort of chronically HCV-infected patients, naive of treatment and its expression in the liver biopsies investigated by immunohistochemistry. We also analysed the ability of IL-26 to modulate the activity of natural killer (NK) cells, which control HCV infection. Results The serum levels of IL-26 are enhanced in chronically HCV-infected patients, mainly in those with severe liver inflammation. Immunohistochemistry reveals an intense IL-26 staining in liver lesions, mainly in infiltrating CD3+ cells. We also show that NK cells from healthy subjects and from HCV-infected patients are sensitive to IL-26. IL-26 upregulates membrane tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression on CD16− CD56bright NK cells, enabling them to kill HCV-infected hepatoma cells, with the same efficacy as interferon (IFN)-α-treated NK cells. IL-26 also induces the expression of the antiviral cytokines IFN-β and IFN-γ, and of the proinflammatory cytokines IL-1β and TNF-α by NK cells. Conclusions This study highlights IL-26 as a new player in the inflammatory and antiviral immune responses associated with chronic HCV infection

    Low Immune Response to Hepatitis B Vaccine among Children in Dakar, Senegal

    Get PDF
    HBV vaccine was introduced into the Expanded Programme on Immunization (EPI) in Senegal and Cameroon in 2005. We conducted a cross-sectional study in both countries to assess the HBV immune protection among children. All consecutive children under 4 years old, hospitalized for any reason between May 2009 and May 2010, with an immunisation card and a complete HBV vaccination, were tested for anti-HBs and anti-HBc. A total of 242 anti-HBc-negative children (128 in Cameroon and 114 in Senegal) were considered in the analysis. The prevalence of children with anti-HBs ≥10 IU/L was higher in Cameroon with 92% (95% CI: 87%–97%) compared to Senegal with 58% (95% CI: 49%–67%), (p<0.001). The response to vaccination in Senegal was lower in 2006–2007 (43%) than in 2008–2009 (65%), (p = 0.028). Our results, although not based on a representative sample of Senegalese or Cameroonian child populations, reveal a significant problem in vaccine response in Senegal. This response problem extends well beyond hepatitis B: the same children who have not developed an immune response to the HBV vaccine are also at risk for diphtheria, tetanus, pertussis (DTwP) and Haemophilus influenzae type b (Hib). Field biological monitoring should be carried out regularly in resource-poor countries to check quality of the vaccine administered

    Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein

    Get PDF
    The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core–DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein

    Screening a Peptide Library by DSC and SAXD: Comparison with the Biological Function of the Parent Proteins

    Get PDF
    We have recently identified the membranotropic regions of the hepatitis C virus proteins E1, E2, core and p7 proteins by observing the effect of protein-derived peptide libraries on model membrane integrity. We have studied in this work the ability of selected sequences of these proteins to modulate the Lβ-Lα and Lα-HII phospholipid phase transitions as well as check the viability of using both DSC and SAXD to screen a protein-derived peptide library. We demonstrate that it is feasible to screen a library of peptides corresponding to one or several proteins by both SAXD and DSC. This methodological combination should allow the identification of essential regions of membrane-interacting proteins which might be implicated in the molecular mechanism of membrane fusion and/or budding
    corecore