821 research outputs found

    The time dimension of neural network models

    Get PDF
    This review attempts to provide an insightful perspective on the role of time within neural network models and the use of neural networks for problems involving time. The most commonly used neural network models are defined and explained giving mention to important technical issues but avoiding great detail. The relationship between recurrent and feedforward networks is emphasised, along with the distinctions in their practical and theoretical abilities. Some practical examples are discussed to illustrate the major issues concerning the application of neural networks to data with various types of temporal structure, and finally some highlights of current research on the more difficult types of problems are presented

    Influence of coral and algal exudates on microbially mediated reef metabolism.

    Get PDF
    Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo'orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs

    Logic models help make sense of complexity in systematic reviews and health technology assessments

    Get PDF
    OBJECTIVE: To describe the development and application of logic model templates for systematic reviews and health technology assessments (HTA) of complex interventions STUDY DESIGN AND SETTING: This study demonstrates the development of a method to conceptualise complexity and make underlying assumptions transparent. Examples from systematic reviews with specific relevance to sub-Saharan Africa (SSA) and other low- and middle-income countries (LMICs) illustrate its usefulness. RESULTS: Two distinct templates are presented: the system-based logic model, describing the system in which the interaction between participants, intervention and context takes place; and the process-orientated logic model, which displays the processes and causal pathways that lead from the intervention to multiple outcomes. CONCLUSION: Logic models can help authors of systematic reviews and HTAs to explicitly address and make sense of complexity, adding value by achieving a better understanding of the interactions between the intervention, its implementation and its multiple outcomes among a given population and context. They thus have the potential to help build systematic review capacity -in SSA and other LMICs - at an individual level, by equipping authors with a tool that facilitates the review process; and at a system-level, by improving communication between producers and potential users of research evidence

    Noncommutative quantum mechanics -- a perspective on structure and spatial extent

    Full text link
    We explore the notion of spatial extent and structure, already alluded to in earlier literature, within the formulation of quantum mechanics on the noncommutative plane. Introducing the notion of average position and its measurement, we find two equivalent pictures: a constrained local description in position containing additional degrees of freedom, and an unconstrained nonlocal description in terms of the position without any other degrees of freedom. Both these descriptions have a corresponding classical theory which shows that the concept of extended, structured objects emerges quite naturally and unavoidably there. It is explicitly demonstrated that the conserved energy and angular momentum contain corrections to those of a point particle. We argue that these notions also extend naturally to the quantum level. The local description is found to be the most convenient as it manifestly displays additional information about structure of quantum states that is more subtly encoded in the nonlocal, unconstrained description. Subsequently we use this picture to discuss the free particle and harmonic oscillator as examples.Comment: 25 pages, no figure

    Natural History of Coral-Algae Competition across a Gradient of Human Activity in the Line Islands

    Get PDF
    Competition between corals and benthic algae is prevalent on coral reefs worldwide and has the potential to influence the structure of the reef benthos. Human activities may influence the outcome of these interactions by favoring algae to become the superior competitor, and this type of change in competitive dynamics is a potential mechanism driving coral-algal phase shifts. Here we surveyed the types and outcomes of coral-algal interactions varied across reefs on the different islands. On reefs surrounding inhabited islands, however, turf algae were generally the superior competitors. When corals were broken down by size class, we found that the smallest and the largest coral colonies were the best competitors against algae; the former successfully fought off algae while being completely surrounded, and the latter generally avoided algal overgrowth by growing up above the benthos. Our data suggest that human disruption of the reef ecosystem may lead to a building pattern of competitive disadvantage for corals against encroaching algae, potentially initiating a transition towards algal dominance

    A Quantitative Analysis of Flight Feather Replacement in the Moustached Tree Swift Hemiprocne mystacea, a Tropical Aerial Forager

    Get PDF
    The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing

    Anti-Kasha Conformational Photoisomerization of a Heteroleptic Dithiolene Metal Complex Revealed by Ultrafast Spectroscopy

    Get PDF
    We investigated the anti-Kasha photochemistry and anti-Kasha emission of d8-metal donor-acceptor dithiolene with femtosecond UV-vis transient absorption spectroscopy and molecular modeling. Experimentally, we found a lifetime of 1.4 ps for higher excited states, which is exceptionally long when compared to typical values for internal conversion (IC) (10 s of fs or less). Consequently, a substantial emission originates from the second excited state. Molecular modeling suggests this to be a consequence of the spatially separated molecular orbitals of the first and second excited states, which gives a charge transfer character to the IC. More surprisingly, we found that the inherent flexibility of the molecule allows the metal complex to access different configurations depending on the photoexcited state. We believe that this unique manifestation of anti-Kasha photoinduced conformational isomerization is facilitated by the exceptionally long lifetime of the second excited state

    Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity

    Get PDF
    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities
    corecore