27 research outputs found

    Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease

    Get PDF
    Altres ajuts: The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The research was funded in part by the European Commission Seventh Framework Programme for research, technological development, and demonstration under grant agreement 305299 (AgedBrainSYSBIO), the Belgian Science Policy Office Interuniversity Attraction Poles program, the Alzheimer Research Foundation (SAO-FRA), the Flemish government-initiated Flanders Impulse Program on Networks for Dementia Research (VIND), the Flemish government-initiated Methusalem Excellence Program, the Research Foundation Flanders (FWO), the VIB Technology Fund, the University of Antwerp Research Fund, Belgium; European Regional Development Fund, the Italian Ministry of Health (Ricerca Corrente and RF-2010-2319722), and the Fondazione Cassa di Risparmio di Pistoia e Pescia grant (2014.0365).Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD

    Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer’s disease

    Get PDF
    Abstract: Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD

    Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort

    Get PDF
    TANK-binding kinase 1 (TBK1) loss-of-function (LoF) mutations are known to cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), often combined with memory deficits early in the disease course. We performed targeted resequencing of TBK1 in 1253 early onset Alzheimer's disease (EOAD) patients from 8 European countries to investigate whether pathogenic TBK1 mutations are enriched among patients with clinical diagnosis of EOAD. Variant frequencies were compared against 2117 origin-matched controls. We identified only 1 LoF mutation (p.Thr79del) in a patient clinically diagnosed with Alzheimer's disease and a positive family history of ALS. We did not observe enrichment of rare variants in EOAD patients compared to controls, nor of rare variants affecting NFκB induction. Of 3 common coding variants, rs7486100 showed evidence of association (OR 1.46 [95% CI 1.13-1.9]; p-value 0.01). Homozygous carriers of the risk allele showed reduced expression of TBK1 (p-value 0.03). Our findings are not indicative of a significant role for TBK1 mutations in EOAD. The association between common variants in TBK1, disease risk and reduced TBK1 expression warrants follow-up in FTD/ALS cohorts

    Rare Variants in PLD3 Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort

    No full text
    Rare variants in the phospholipase D3 gene (PLD3) were associated with increased risk for late-onset Alzheimer disease (LOAD). We identified a missense mutation in PLD3 in whole-genome sequence data of a patient with autopsy confirmed Alzheimer disease (AD) and onset age of 50 years. Subsequently, we sequenced PLD3 in a Belgian early-onset Alzheimer disease (EOAD) patient (N = 261) and control (N = 319) cohort, as well as in European EOAD patients (N = 946) and control individuals (N = 1,209) ascertained in different European countries. Overall, we identified 22 rare variants with a minor allele frequency <1%, 20 missense and two splicing mutations. Burden analysis did not provide significant evidence for an enrichment of rare PLD3 variants in EOAD patients in any of the patient/control cohorts. Also, meta-analysis of the PLD3 data, including a published dataset of a German EOAD cohort, was not significant (P = 0.43; OR = 1.53, 95% CI 0.60-3.31). Consequently, our data do not support a role for PLD3 rare variants in the genetic etiology of EOAD in European EOAD patients. Our data corroborate the negative replication data obtained in LOAD studies and therefore a genetic role of PLD3 in AD remains to be demonstrated.status: publishe

    Rare Variants in PLD3 Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort.

    Get PDF
    Rare variants in the phospholipase D3 gene (PLD3) were associated with increased risk for late-onset Alzheimer disease (LOAD). We identified a missense mutation in PLD3 in whole-genome sequence data of a patient with autopsy confirmed Alzheimer disease (AD) and onset age of 50 years. Subsequently, we sequenced PLD3 in a Belgian early-onset Alzheimer disease (EOAD) patient (N = 261) and control (N = 319) cohort, as well as in European EOAD patients (N = 946) and control individuals (N = 1,209) ascertained in different European countries. Overall, we identified 22 rare variants with a minor allele frequency <1%, 20 missense and two splicing mutations. Burden analysis did not provide significant evidence for an enrichment of rare PLD3 variants in EOAD patients in any of the patient/control cohorts. Also, meta-analysis of the PLD3 data, including a published dataset of a German EOAD cohort, was not significant (P = 0.43; OR = 1.53, 95% CI 0.60-3.31). Consequently, our data do not support a role for PLD3 rare variants in the genetic etiology of EOAD in European EOAD patients. Our data corroborate the negative replication data obtained in LOAD studies and therefore a genetic role of PLD3 in AD remains to be demonstrated

    Genetic variability in SQSTM1 and risk of early-onset Alzheimer dementia: a European early-onset dementia consortium study.

    Get PDF
    43nonenoneCuyvers, E; van der Zee, J; Bettens, K; Engelborghs, S; Vandenbulcke, M; Robberecht, C; Dillen, L; Merlin, C; Geerts, N; Graff, C; Thonberg, H; Chiang, Hh; Pastor, P; Ortega-Cubero, S; Pastor, Ma; Diehl-Schmid, J; Alexopoulos, P; Benussi, L; Ghidoni, R; Binetti, G; Nacmias, B; Sorbi, S; Sanchez-Valle, R; Lladó, A; Gelpi, E; Almeida, Mr; Santana, I; Clarimon, J; Lleó, A; Fortea, J; de Mendonça, A; Martins, M; Borroni, B; Padovani, A; Matěj, R; Rohan, Z; Ruiz, A; Frisoni, Gb; Fabrizi, Gm; Vandenberghe, R; De Deyn, Pp; Van Broeckhoven, C; Sleegers, KCuyvers, E; van der Zee, J; Bettens, K; Engelborghs, S; Vandenbulcke, M; Robberecht, C; Dillen, L; Merlin, C; Geerts, N; Graff, C; Thonberg, H; Chiang, Hh; Pastor, P; Ortega Cubero, S; Pastor, Ma; Diehl Schmid, J; Alexopoulos, P; Benussi, L; Ghidoni, R; Binetti, G; Nacmias, B; Sorbi, S; Sanchez Valle, R; Lladó, A; Gelpi, E; Almeida, Mr; Santana, I; Clarimon, J; Lleó, A; Fortea, J; de Mendonça, A; Martins, M; Borroni, Barbara; Padovani, Alessandro; Matěj, R; Rohan, Z; Ruiz, A; Frisoni, Gb; Fabrizi, Gm; Vandenberghe, R; De Deyn, Pp; Van Broeckhoven, C; Sleegers, K
    corecore