358 research outputs found
Limits to sustained energy intake XII : is the poor relation between resting metabolic rate and reproductive performance because resting metabolism is not a repeatable trait?
Peer reviewedPublisher PD
Perceptual organization in user-generated graph layouts
Many graph layout algorithms optimize visual characteristics to achieve useful representations. Implicitly, their goal is to create visual representations that are more intuitive to human observers. In this paper, we asked users to explicitly manipulate nodes in a network diagram to create layouts that they felt best captured the relationships in the data. This allowed us to measure organizational behavior directly, allowing us to evaluate the perceptual importance of particular visual features, such as edge crossings and edge-lengths uniformity. We also manipulated the interior structure of the node relationships by designing data sets that contained clusters, that is, sets of nodes that are strongly interconnected. By varying the degree to which these clusters were ldquomaskedrdquo by extraneous edges we were able to measure observerspsila sensitivity to the existence of clusters and how they revealed them in the network diagram. Based on these measurements we found that observers are able to recover cluster structure, that the distance between clusters is inversely related to the strength of the clustering, and that users exhibit the tendency to use edges to visually delineate perceptual groups. These results demonstrate the role of perceptual organization in representing graph data and provide concrete recommendations for graph layout algorithm
Direct observation of dislocation nucleation in pyrite using combined electron channelling contrast imaging and electron backscatter diffraction
Graphical Perception of Continuous Quantitative Maps: the Effects of Spatial Frequency and Colormap Design
Continuous 'pseudocolor' maps visualize how a quantitative attribute varies smoothly over space. These maps are widely used by experts and lay citizens alike for communicating scientific and geographical data. A critical challenge for designers of these maps is selecting a color scheme that is both effective and aesthetically pleasing. Although there exist empirically grounded guidelines for color choice in segmented maps (e.g., choropleths), continuous maps are significantly understudied, and their color-coding guidelines are largely based on expert opinion and design heuristics--many of these guidelines have yet to be verified experimentally. We conducted a series of crowdsourced experiments to investigate how the perception of continuous maps is affected by colormap characteristics and spatial frequency (a measure of data complexity). We find that spatial frequency significantly impacts the effectiveness of color encodes, but the precise effect is task-dependent. While rainbow schemes afforded the highest accuracy in quantity estimation irrespective of spatial complexity, divergent colormaps significantly outperformed other schemes in tasks requiring the perception of high-frequency patterns. We interpret these results in relation to current practices and devise new and more granular guidelines for color mapping in continuous maps
Partial melting of amphibole–clinozoisite eclogite at the pressure maximum (eclogite type locality, Eastern Alps, Austria)
Pristine amphibole–clinozoisite eclogite from within the eclogite type locality (Hohl, Koralpe) of the Eastern Alps in Austria preserves centimetre-thick, concordant, laterally continuous leucocratic segregations of coarse-grained (up to ∼ 1 cm grain diameter) euhedral amphibole–clinozoisite–quartz and disseminated garnet–omphacite–rutile. The segregations locally show selvedges dominated by coarse-grained amphibole at the interface with their host eclogite. Retrogression is limited to thin films of texturally late plagioclase ± amphibole and minor symplectites of diopside–plagioclase partially replacing omphacite. Mineral compositions are largely homogeneous except for clinozoisite, which is significantly enriched in Fe3+, rare-earth and high-field-strength elements in the rock matrix compared to that in segregations. Petrography, mineral chemical data and phase diagram modelling are interpreted in terms of limited melting under high-aH2O conditions, at or close to the well-established pressure maximum (21 ± 3 kbar and 680–740 ∘C), followed by melt crystallization near these conditions. Exsolution of melt-dissolved H2O led to the formation of the amphibole-rich selvedges at the leucosome–eclogite interface. Plagioclase ± amphibole/clinopyroxene films formed at lower pressure from final melt vestiges adhering to grain boundaries or from secondary fluid–rock interaction. Natural variability in rock composition and the bulk oxidation state leads to variable mineral modes and calculated high-pressure solidus temperatures for compositional end-members sampled at Hohl. Modelling suggests that oxidized conditions (XFe3+<0.5) favour hydrated but refractory amphibole–clinozoisite-rich assemblages with a fluid-present solidus temperature of ∼ 740 ∘C at 20 kbar, whereas more reduced conditions (XFe3+∼0.2) yield “true” eclogites (> 80 vol % garnet + omphacite) that commence melting at ∼ 720 ∘C at the same pressure. The interlayering of such eclogites potentially constitutes a fluid source–sink couple under appropriate pressure–temperature conditions, favouring fluid transfer from neighbouring dehydrating layers to melt-bearing ones down gradients in the chemical potential of H2O (μH2O). Phase diagram calculations show that for moderate degrees of fluid-fluxed melting (≤ 10 vol % melt) near the pressure maximum, the observed equilibrium assemblage is preserved, provided the melt is subsequently removed from the source rock. The resulting hydrous melts may be, in part, parents to similar eclogite-hosted pegmatitic segregations described in the eclogite type locality. We suggest that eclogites with a comparable composition and metamorphic history are however unlikely to produce voluminous melts.</p
Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration
Prostate Cancer-Associated Disseminated Intravascular Coagulation with Excessive Fibrinolysis Treated with Degarelix
Disseminated intravascular coagulation (DIC) with excessive fibrinolysis (XFL) is a rare and acute life-threatening variant of DIC in patients with prostate cancer. Patients present with coagulopathy, hypofibrinogenemia, and systemic bleeding. We describe a case of DIC XFL caused by prostate cancer (PC) successfully treated with a single injection of degarelix, a gonadotropin-releasing hormone (GnRH) receptor antagonist. This led to prompt control of the patient’s coagulopathy within ten days of treatment. Our case highlights features of this rare and devastating hemorrhagic complication of PC along with a fast-acting and effective therapeutic drug option
Three-dimensional mineral dendrites reveal a nonclassical crystallization pathway
Manganese (Mn) dendrites are a common type of mineral dendrite that typically forms two-dimensional structures on rock surfaces. Three-dimensional (3-D) Mn dendrites in rocks have rarely been reported, and so their growth implications have largely escaped attention. Here, we combined high-resolution X-ray and electron-based data with numerical modeling to give the first detailed description of natural 3-D Mn dendrites (in clinoptilolite tuffs) and elucidate their growth dynamics. Our data show that 3-D dendrite growth occurred by accretion of Mn-oxide nanoparticles formed when Mn-bearing fluids mixed with oxygenated pore water. The geometry of the resulting structures is sensitive to ion concentrations, the volume of infiltrating fluid, and the number of fluid pulses; thus, 3-D dendrites record the hydrogeochemical rock history
- …
