29 research outputs found

    mlplasmids : a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species

    Get PDF
    Assembly of bacterial short-read whole-genome sequencing data frequently results in hundreds of contigs for which the origin, plasmid or chromosome, is unclear. Complete genomes resolved by long-read sequencing can be used to generate and label short-read contigs. These were used to train several popular machine learning methods to classify the origin of contigs from Enterococcus faecium, Klebsiella pneumoniae and Escherichia colt using pentamer frequencies. We selected support-vector machine (SVM) models as the best classifier for all three bacterial species (Fl-score E. faecium=0.92, F1-score K. pneumoniae=0.90, F1-score E. coli=0.76), which outperformed other existing plasmid prediction tools using a benchmarking set of isolates. We demonstrated the scalability of our models by accurately predicting the plasmidome of a large collection of 1644 E. faecium isolates and illustrate its applicability by predicting the location of antibiotic-resistance genes in all three species. The SVM classifiers are publicly available as an R package and graphical-user interface called 'mlplasmids'. We anticipate that this tool may significantly facilitate research on the dissemination of plasmids encoding antibiotic resistance and/or contributing to host adaptation.Peer reviewe

    gplas : a comprehensive tool for plasmid analysis using short-read graphs

    Get PDF
    aSummary: Plasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environments and hosts. Short-read whole-genome sequencing data are often applied to large-scale bacterial comparative genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inability to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph information and network partitioning based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short-read sequence data.Peer reviewe

    Enterococcus faecium genome dynamics during long-term asymptomatic patient gut colonization

    Get PDF
    Enterococcus faecium is a gut commensal of humans and animals. In addition, it has recently emerged as an important nosocomial pathogen through the acquisition of genetic elements that confer resistance to antibiotics and virulence. We performed a whole-genome sequencing-based study on 96 multidrug-resistant E. faecium strains that asymptomatically colonized five patients with the aim of describing the genome dynamics of this species. The patients were hospitalized on multiple occasions and isolates were collected over periods ranging from 15 months to 6.5 years. Ninety-five of the sequenced isolates belonged to E. faecium clade A1, which was previously determined to be responsible for the vast majority of clinical infections. The clade A1 strains clustered into six clonal groups of highly similar isolates, three of which consisted entirely of isolates from a single patient. We also found evidence of concurrent colonization of patients by multiple distinct lineages and transfer of strains between patients during hospitalization. We estimated the evolutionary rate of two clonal groups that each colonized single patients at 12.6 and 25.2 single-nucleotide polymorphisms (SNPs)/genome/year. A detailed analysis of the accessory genome of one of the clonal groups revealed considerable variation due to gene gain and loss events, including the chromosomal acquisition of a 37 kbp prophage and the loss of an element containing carbohydrate metabolism-related genes. We determined the presence and location of 12 different insertion sequence (IS) elements, with ISEfa5 showing a unique pattern of location in 24 of the 25 isolates, suggesting widespread ISEfa5 excision and insertion into the genome during gut colonization. Our findings show that the E. faecium genome is highly dynamic during asymptomatic colonization of the human gut. We observed considerable genomic flexibility due to frequent horizontal gene transfer and recombination, which can contribute to the generation of genetic diversity within the species and, ultimately, can contribute to its success as a nosocomial pathogen

    Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens : Attack of the Clones?

    Get PDF
    Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus. Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E faecalls.Peer reviewe

    Differential analysis of longitudinal methicillin-resistant Staphylococcus aureus colonization in relation to microbial shifts in the nasal microbiome of neonatal piglets

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen and often colonizes pigs. To lower the risk of MRSA transmission to humans, a reduction of MRSA prevalence and/or load in pig farms is needed. The nasal microbiome contains commensal species that may protect against MRSA colonization and may be used to develop competitive exclusion strategies. To obtain a comprehensive understanding of the species that compete with MRSA in the developing porcine nasal microbiome, and the moment of MRSA colonization, we analyzed nasal swabs from piglets in two litters. The swabs were taken longitudinally, starting directly after birth until 6 weeks. Both 16S rRNA and tuf gene sequencing data with different phylogenetic resolutions and complementary culture-based and quantitative real-time PCR (qPCR)-based MRSA quantification data were collected. We employed a compositionally aware bioinformatics approach (CoDaSeq - rmcorr) for analysis of longitudinal measurements of the nasal microbiota. The richness and diversity in the developing nasal microbiota increased over time, albeit with a reduction of Firmicutes and Actinobacteria, and an increase of Proteobacteria. Coabundant groups (CAGs) of species showing strong positive and negative correlation with colonization of MRSA and S. aureus were identified. Combining 16S rRNA and tuf gene sequencing provided greater Staphylococcus species resolution, which is necessary to inform strategies with potential protective effects against MRSA colonization in pigs.IMPORTANCE The large reservoir of methicillin-resistant Staphylococcus aureus (MRSA) in pig farms imposes a significant zoonotic risk. An effective strategy to reduce MRSA colonization in pig farms is competitive exclusion whereby MRSA colonization can be reduced by the action of competing bacterial species. We complemented 16S rRNA gene sequencing with Staphylococcus-specific tuf gene sequencing to identify species anticorrelating with MRSA colonization. This approach allowed us to elucidate microbiome dynamics and identify species that are negatively and positively associated with MRSA, potentially suggesting a route for its competitive exclusion

    Gut Colonization by ESBL-Producing Escherichia coli in Dogs Is Associated with a Distinct Microbiome and Resistome Composition

    Get PDF
    The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks ( n  = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia -Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs

    Draft Genome Sequence of Haemophilus haemolyticus Strain 16/010 O, Isolated from a Sputum Sample from a Cystic Fibrosis Patient

    No full text
    Haemophilus haemolyticus is considered a commensal of the respiratory tract that can cause opportunistic infections. It is closely related to Haemophilus influenzae Here, we report the genome sequence of H. haemolyticus 16/010 O, which was isolated from sputum from a cystic fibrosis patient

    gplas: a comprehensive tool for plasmid analysis using short-read graphs

    Get PDF
    SUMMARY: Plasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environments and hosts. Short-read whole-genome sequencing data are often applied to large-scale bacterial comparative genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inability to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph information and network partitioning based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short-read sequence data. AVAILABILITY AND IMPLEMENTATION: Gplas is written in R, Bash and uses a Snakemake pipeline as a workflow management system. Gplas is available under the GNU General Public License v3.0 at https://gitlab.com/sirarredondo/gplas.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Draft genome sequence of haemophilus haemolyticus strain 16/010 o, isolated from a sputum sample from a cystic fibrosis patient

    No full text
    Haemophilus haemolyticus is considered a commensal of the respiratory tract that can cause opportunistic infections. It is closely related to Haemophilus influenzae Here, we report the genome sequence of H. haemolyticus 16/010 O, which was isolated from sputum from a cystic fibrosis patient
    corecore