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Abstract

Summary: Plasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environ-
ments and hosts. Short-read whole-genome sequencing data are often applied to large-scale bacterial comparative
genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inabil-
ity to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably
separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph infor-
mation and network partitioning based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large
numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short-read se-
quence data.

Availability and implementation: Gplas is written in R, Bash and uses a Snakemake pipeline as a workflow manage-
ment system. Gplas is available under the GNU General Public License v3.0 at https://gitlab.com/sirarredondo/gplas.git.

Contact: a.c.schurch@umcutrecht.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A single bacterial cell can harbor several distinct plasmids; however,
current plasmid prediction tools from short-read WGS often have a
binary outcome (plasmid or chromosome). To bin predicted plas-
mids into discrete entities, we built a new method based on the fol-
lowing concepts: (i) contigs of the same plasmid have a uniform
sequence coverage (Antipov et al., 2016; Rozov et al., 2016), (ii)
plasmid paths in the assembly graph can be searched for using a
greedy approach (Miiller and Chauve, 2019) and (iii) removal of re-
peat units from the plasmid graphs disconnects the graph into inde-
pendent components (Vielva et al., 2017).

Here, we refined these ideas and introduce the concept of uni-
tigs co-occurrence to create a pruned plasmidome network. Using
an unsupervised approach, the network is queried to find highly
connected nodes corresponding to sequences belonging to the same
discrete plasmid unit, representing a single plasmid. We show that
our approach outperforms other de novo and reference-based tools
and fully automates the reconstruction of plasmids from short
reads.

©The Author(s) 2020. Published by Oxford University Press.

2 Materials and methods

2.1 Gplas algorithm

Given a short-read assembly graph (gfa format), segments (nodes)
and edges (links) are extracted from the graph. Gplas uses mlplas-
mids (version 1.0.0, prediction threshold = 0.5) or plasflow (version
1.1, prediction threshold = 0.7) to classify segments as plasmid- or
chromosome-derived and selects segments with an in- and out-
degree of 1 (unitigs) (Arredondo-Alonso et al., 2018; Krawczyk
et al., 2018). The k-mer coverage SD of the chromosome-derived
unitigs is computed to quantify the fluctuation in the coverage of
segments belonging to the same replicon unit. Plasmid-derived uni-
tigs are considered to search for plasmid walks with a similar cover-
age and composition using a greedy approach (Supplementary
Methods S1). Gplas creates a plasmidome network (undirected
graph) in which nodes correspond to plasmid unitigs and edges are
created and weighted based on the co-existence of the nodes in the
solution space of the computed walks. Modularity values computed
using a selection of partitioning algorithms (Blondel et al., 2008;
Newman, 2006; Pons and Latapy, 2005) are considered to perform
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Algorithm 1 Gplas pseudocode

Data: Graph G from SPAdes or Unicycler
Result: Plasmidome network Gp. Assignment of plasmid nodes
Np into different bins

Initialization;

Extract nodes N and links L from G;

Divide N as collection of plasmid-derived nodes P and
chromosome-derived nodes C using mlplasmids or plasflow;

Discard P and C with an d?(v) and d°(v) != 1 and length < 1 kbp;

Determine the s% of C based on the k-mer coverage;

for each vog € P do

Search through all the possible plasmid-like walks W starting
from vg;

for W in number of walks do

while 3 eligible extension E(W) do
Consider the last vin W

Retrieve all candidate extensions E(W)

Compute gplas scores g(W,v) of E(W)

Filter E(W') with a g(W,v) < & (default = 0.1, tunable by
the user)

Sample a E(W') based on the vector g(W,v)

Extension of W using the selected v

end

Create a new set of links Lp connecting Np in W;
Reinitialize W considering again vo as first element;

end

end

Compute the weights Hp of Lp based on their frequency in W;
Create a novel plasmidome network G»(Np, Lp,Hp);
Consider components (subgraphs) G%, from Gp;
for each G, with N3, > 1 do
Compute modularity values Q from G using three
partitioning algorithms ;
Consider all Q > 0.2 (tunable by the user) to split G%; and
perform a voting decision ;
Predict N}D as a single bin or classify N}; into bins based on
the partitioning algorithm with a highest Q;
end
Classification of N7i> in G%D with N;; =1 as singletons;

Plot G with colours according to bin classification;
Algorithm 1: Gplas pseudocode

a voting decision regarding the split of the components into different
bins (subcomponents) in the undirected network (Supplementary
Methods S1). These bins represent the set of plasmids present in the
bacterial isolate and are plotted in the plasmidome network using
igraph R package (Csardi et al., 2006). The pseudocode and formal-
ization of the algorithm are available in Algorithm 1 and
Supplementary Methods S1, respectively.

2.2 Benchmarking dataset

Gplas was benchmarked against current existing tools to bin plas-
mid contigs from short-read WGS: (i) plasmidSPAdes (de novo-
based approach, version 3.12) (Antipov et al., 2016), (ii) mob-recon
(reference-based approach, version 1.4.9.1) (Robertson and Nash,
2018) and (iii) hyasp (hybrid approach, version 1.0.0) (Miiller and

Table 1. Gplas benchmarking

Tool Precision Completeness Bin size

gplas—mlplasmids 0.88/0.82* 0.79/0.72* 6.02/10.9*
gplas—plasflow 0.62/0.45% 0.52/0.32% 7.17/11.1*
hyasp 0.64/0.56* 0.36/0.30% 3.84/5.65%
mob-recon 0.79/0.71* 0.56/0.51* 3.4/7.22°
plasmidSPAdes 0.52/0.27* 0.56/0.38* 6.99/13.7%

?Components >1 node.

Chauve, 2019). To evaluate the binning tools, we selected a set of
28 genomes with short- and long-read WGS available including 106
plasmids from 9 different bacterial species, which were not present
in the databases or training sets of the tools (Supplementary
Methods S3 and Table S1) (Arredondo-Alonso et al., 2020; De
Maio et al., 2019; Decano et al., 2019; Wick et al., 2017).

Let 7y, be the total number of nodes present in the predicted bin
and define ref as the reference replicon sequence with a highest num-
ber of nodes in each bin. Let 7, be the total number of nodes com-
prised in ref. We then define two metrics commonly used in
metagenomics for binning evaluation: (i) precision and (ii) complete-
ness (Supplementary Methods S4).

s Mpin € Myef
precision = ————=
Mpin
_ Mpin € Nyef
completeness = ————.
Nref

3 Results

Gplas in combination with mlplasmids obtained the highest average
precision (0.88) indicating that the predicted components were
mostly formed by nodes belonging to the same discrete plasmid unit
(Table 1 and Supplementary Fig. S1). The reported average com-
pleteness value (0.79) showed that most of the nodes from a single
plasmid were recovered as a discrete plasmid bin by gplas (Table 1
and Supplementary Fig. S2). We observed a decline in the perform-
ance of gplas in combination with mlplasmids (precision = 0.82,
completeness = 0.72) when considering uniquely bins with a size
larger than one which indicated merging problems of large plasmids
with a similar k-mer coverage (Supplementary Fig. S3 and Results
S2). However, in all cases, the performance of gplas in combination
with mlplasmids performed better than other de-novo and
reference-based tools tested here (Table 1). To show the potential of
gplas in combination with mlplasmids, we showcase the perform-
ance of our approach in two distinct bacterial isolates
(Supplementary Results S1 and S2).

Miplasmids only contains a limited range of species models
(Supplementary Methods). For other bacterial species, we observed
that plasflow probabilities in combination with gplas performed
similar than the other de-novo approaches but also introduced bias
when wrongly predicting chromosome contigs as plasmid nodes
(Table 1 and Supplementary Fig. S1), thereby creating bins corre-
sponding to chromosome and plasmid chimeras (precision = 0.62).

4 Discussion

We present a new tool called gplas, which enables the binning and a
detailed analysis workflow of binary classified plasmid contigs into
discrete plasmid units by relying on the structure of the assembly
graph, k-mer information and partitioning of a pruned plasmidome
network. A limitation of the presented approach is the generation of
chimeras resulting from plasmids with similar k-mer profiles, k-mer
coverage and sharing repeat unit(s), such as a transposase or an IS
element. These cases cannot be unambiguously solved. Here, we
integrated and extended upon features to predict plasmid sequences
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and exploit the information present in short-read graphs to auto-
mate the reconstruction of plasmids.
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