109 research outputs found

    Radiological perspective of the formation of pressure ulcers - a comparison of pressure and experience on two imaging surfaces

    Get PDF
    Introduction: Pressure ulcers are a high cost, high volume issue for health and medical care providers, affecting patients’ recovery and psychological wellbeing. The current research of pressure on support surfaces as a risk factor in the development of pressure ulcers is not relevant to the specialised, controlled environment of the radiological setting. Method: 38 healthy participants aged 19-51 were positioned supine on two different imaging surfaces (X-ray Table & Mattressed Table). Interface pressure data was acquired using the XSENSOR pressure mapping over a time of 2073 minutes, preceded by 6 minutes settling time to reduce measurement error. Qualitative data regarding participants’ opinion of pain and comfort was recorded using a questionnaire. Data analysis was performed using SPSS 22. Results: Data was collected from 30 participants aged 19 to 51 (mean 25.77, SD 7.72), BMI from 18.7 to 33.6 (mean 24.12, SD 3.29), for both imaging surfaces, following eight participant exclusions. Total average pressure, average pressure for jeopardy areas (head, sacrum & heels) and peak pressure for jeopardy areas were calculated as interface pressure in mmHg. Qualitative data showed that a significant difference (P<0.05) in experiences of pain and discomfort between the two surfaces. A significant difference is seen in average pressure between the two surfaces. Conclusion: Pain and comfort data also show a significant difference between the surfaces. All findings support the proposal for further investigation into the effects of radiological surfaces and overlays as a risk factor for the formation of pressure ulcers

    LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B

    Full text link
    AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights

    CED 2020 Analytics

    Get PDF

    Responses of Argas Persicus (Oken 1818) to Compounds of Cadmium and Antimony

    Get PDF
    Entomolog

    SIG-DB: leveraging homomorphic encryption to Securely Interrogate privately held Genomic DataBases

    Full text link
    Genomic data are becoming increasingly valuable as we develop methods to utilize the information at scale and gain a greater understanding of how genetic information relates to biological function. Advances in synthetic biology and the decreased cost of sequencing are increasing the amount of privately held genomic data. As the quantity and value of private genomic data grows, so does the incentive to acquire and protect such data, which creates a need to store and process these data securely. We present an algorithm for the Secure Interrogation of Genomic DataBases (SIG-DB). The SIG-DB algorithm enables databases of genomic sequences to be searched with an encrypted query sequence without revealing the query sequence to the Database Owner or any of the database sequences to the Querier. SIG-DB is the first application of its kind to take advantage of locality-sensitive hashing and homomorphic encryption to allow generalized sequence-to-sequence comparisons of genomic data.Comment: 38 pages, 3 figures, 4 tables, 1 supplemental table, 7 supplemental figure

    Effects of an electric field on white sharks: in situ testing of an electric deterrent

    Get PDF
    Elasmobranchs can detect minute electromagnetic fields, <1 nVcm -1 , using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks ( Carcharodon carcharias ) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks

    Learning to live in a smart home

    Get PDF
    Smart homes promise to significantly enhance domestic comfort, convenience, security and leisure whilst simultaneously reducing energy use through optimized home energy management. Their ability to achieve these multiple aims rests fundamentally on how they are used by householders, yet very little is currently known about this topic. The few studies that have explored the use of smart homes have tended to focus on special-interest groups and be quite short-term. This paper reports on new in-depth qualitative data that explore the domestication of a range of smart home technologies in 10 households participating in a nine-month field trial. Four core themes emerge: (1) smart home technologies are both technically and socially disruptive; (2) smart homes require forms of adaptation and familiarization from householders that can limit their use; (3) learning to use smart home technologies is a demanding and time-consuming task for which there is currently very little support available; and (4) there is little evidence that smart home technologies will generate substantial energy savings and, indeed, there is a risk that they may generate forms of energy intensification. The paper concludes by discussing the implications of these findings for policy, design and further research

    A pilot study on the kinetics of metabolites and microvascular cutaneous effects of nitric oxide inhalation in healthy volunteers

    Get PDF
    RATIONALE: Inhaled nitric oxide (NO) exerts a variety of effects through metabolites and these play an important role in regulation of hemodynamics in the body. A detailed investigation into the generation of these metabolites has been overlooked. OBJECTIVES: We investigated the kinetics of nitrite and S-nitrosothiol-hemoglobin (SNO-Hb) in plasma derived from inhaled NO subjects and how this modifies the cutaneous microvascular response. FINDINGS: We enrolled 15 healthy volunteers. Plasma nitrite levels at baseline and during NO inhalation (15 minutes at 40 ppm) were 102 (86-118) and 114 (87-129) nM, respectively. The nitrite peak occurred at 5 minutes of discontinuing NO (131 (104-170) nM). Plasma nitrate levels were not significantly different during the study. SNO-Hb molar ratio levels at baseline and during NO inhalation were 4.7E-3 (2.5E-3-5.8E-3) and 7.8E-3 (4.1E-3-13.0E-3), respectively. Levels of SNO-Hb continued to climb up to the last study time point (30 min: 10.6E-3 (5.3E-3-15.5E-3)). The response to acetylcholine iontophoresis both before and during NO inhalation was inversely associated with the SNO-Hb level (r: -0.57, p = 0.03, and r: -0.54, p = 0.04, respectively). CONCLUSIONS: Both nitrite and SNO-Hb increase during NO inhalation. Nitrite increases first, followed by a more sustained increase in Hb-SNO. Nitrite and Hb-SNO could be a mobile reservoir of NO with potential implications on the systemic microvasculature
    • …
    corecore