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Abstract

Rationale

Inhaled nitric oxide (NO) exerts a variety of effects through metabolites and these play an

important role in regulation of hemodynamics in the body. A detailed investigation into the

generation of these metabolites has been overlooked.

Objectives

We investigated the kinetics of nitrite and S-nitrosothiol-hemoglobin (SNO-Hb) in plasma

derived from inhaled NO subjects and how this modifies the cutaneous microvascular

response.

Findings

We enrolled 15 healthy volunteers. Plasma nitrite levels at baseline and during NO inhala-

tion (15 minutes at 40 ppm) were 102 (86–118) and 114 (87–129) nM, respectively. The

nitrite peak occurred at 5 minutes of discontinuing NO (131 (104–170) nM). Plasma nitrate

levels were not significantly different during the study. SNO-Hb molar ratio levels at baseline

and during NO inhalation were 4.7E-3 (2.5E-3–5.8E-3) and 7.8E-3 (4.1E-3-13.0E-3),

respectively. Levels of SNO-Hb continued to climb up to the last study time point (30 min:

10.6E-3 (5.3E-3-15.5E-3)). The response to acetylcholine iontophoresis both before and

during NO inhalation was inversely associated with the SNO-Hb level (r: -0.57, p = 0.03, and

r: -0.54, p = 0.04, respectively).

PLOS ONE | https://doi.org/10.1371/journal.pone.0221777 August 30, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tonelli AR, Aulak KS, Ahmed MK,

Hausladen A, Abuhalimeh B, Casa CJ, et al. (2019)

A pilot study on the kinetics of metabolites and

microvascular cutaneous effects of nitric oxide

inhalation in healthy volunteers. PLoS ONE 14(8):

e0221777. https://doi.org/10.1371/journal.

pone.0221777

Editor: Joseph Alan Bauer, Bauer Research

Foundation, UNITED STATES

Received: May 3, 2019

Accepted: August 14, 2019

Published: August 30, 2019

Copyright: © 2019 Tonelli et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: ART is supported by NIH grant #

R01HL130307 and AD is supported by NIH grant #

R01GM113838. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-2321-9545
http://orcid.org/0000-0003-1139-4730
http://orcid.org/0000-0003-1246-2707
https://doi.org/10.1371/journal.pone.0221777
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221777&domain=pdf&date_stamp=2019-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221777&domain=pdf&date_stamp=2019-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221777&domain=pdf&date_stamp=2019-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221777&domain=pdf&date_stamp=2019-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221777&domain=pdf&date_stamp=2019-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221777&domain=pdf&date_stamp=2019-08-30
https://doi.org/10.1371/journal.pone.0221777
https://doi.org/10.1371/journal.pone.0221777
http://creativecommons.org/licenses/by/4.0/


Conclusions

Both nitrite and SNO-Hb increase during NO inhalation. Nitrite increases first, followed by a

more sustained increase in Hb-SNO. Nitrite and Hb-SNO could be a mobile reservoir of NO

with potential implications on the systemic microvasculature.

Introduction

Over the past years the role of NO in biology has increased tremendously and is involved in

diverse functions such as bacterial defense, neurotransmission and reproduction [1–4]. NO is

a highly diffusible gas synthesized by a group of nitric oxide synthases (NOS) [5]. It was identi-

fied in 1980s and initially referred as endothelium-dependent relaxation factor [6–8]. Three

isoforms of NOS exist but the endothelial NOS (type 3 NOS) generates NO in the pulmonary

vascular bed [9]. Upon generation, NO diffuses to adjacent cells [10]. NO’s half-life can be as

low as 1.8 ms in the presence of mM concentrations of hemoglobin (Hb) [8, 11, 12], and there-

fore it is likely not the principal effector molecule for many NO bioactivities. NO can be rap-

idly oxidized to nitrate (NO3
-) and nitrite (NO2

-) [13], or taken by hemoglobin (Hb) to form

nitrosyl-Hb (Hb:[Fe]NO) or S-nitrosothiol-Hb (SNO-Hb) [14].

NO administered via inhalation relaxes the pulmonary vasculature. Inhaled NO in criti-

cally ill neonates with pulmonary hypertension improves oxygenation [15, 16] and is cur-

rently approved by the US Food and Drug Administration [17, 18] for treatment of term and

near-term neonates with hypoxic respiratory failure associated with clinical or echocardio-

graphic evidence of pulmonary hypertension. Other studies have suggested that inhaled NO

could be used to treat a wide spectrum of cardiopulmonary conditions, including acute

respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD),

acute pulmonary embolism (PE), hypoxemic respiratory failure and pulmonary hyperten-

sion [19–23].

Inhaled, NO diffuses across the lung, reaching the smooth muscle cells of subjacent ves-

sels where it causes selective pulmonary vasodilation [24, 25]. Besides local pulmonary

effects, mounting evidence supports that inhaled NO exerts a variety of systemic effects. A

number of studies have demonstrated that inhaled NO can affect multiple organs [26–35].

Indeed inhaled NO can be protective in brain injury as demonstrated by the hypoxia-ische-

mia or traumatic brain injury models [30–35]. Given the efficient scavenging by hemoglo-

bin, the systemic effects are unlikely caused by direct effects of the inhaled NO itself [5].

Nitrite, low molecular weight SNO (eg. S-Nitrosoglutathione (GSNO)) or protein bound

SNO species, may be involved in transporting the NO signal to the systemic circulation

[36]. In fact, during hypoxic conditions, nitrite can regenerate NO by nitrite reductases

[37, 38] and SNO-Hb is bioactivated by transfering nitrosonium (NO+) to other thiols [14,

39].

Controversy persists on whether both nitrite in plasma and SNO-Hb in erythrocytes

increase during NO inhalation [40]. In fact, there remains a need for a quantitative evaluation

of the array of circulating NO metabolites generated by breathing NO and the fate of these

metabolites after ceasing its administration. Furthermore, little is known whether inhaled NO

affects the cutaneous microcirculation. We hypothesized that inhaled NO increases the plasma

levels of nitrite and SNO-Hb which then modify the cutaneous microvascular response to

vasoactive mediators that challenge the NO pathway.

Nitric oxide metabolites in healthy subjects
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Materials and methods

a) Study approval

The study was approved by the institutional review board of the Cleveland Clinic (IRB # 12–

1328). All subjects provided written informed consent prior to inclusion in the study. We con-

ducted this cross-sectional study between May 2015 and September 2015.

b) Subject selection and environment

Volunteers were in excellent general health and underwent a detailed evaluation to rule out

smoking or conditions (e.g. diabetes, hypercholesterolemia or hypertension) that could affect

the NO metabolism or cutaneous microcirculation. Subjects did not eat or drink for 4 hours

prior to testing. Procedures were performed in a private room where individuals were acclima-

tized for at least 30 minutes (room temperature: 72˚ F or 22˚ C).

c) Nitric oxide inhalation

Nitric oxide (INOMAX, Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA) was adminis-

tered continuously for 15 minutes through a disposable nasal cannula at a dose of 40 ppm, car-

ried by room air at a flow rate of 4 L/min, following manufacturer’s recommendations.

d) Laboratory determinations

-Blood collection. We placed a temporary venous access in the dorsal aspect of the right

hand. Blood was obtained at baseline (before NO inhalation), at 15 minutes of continuous NO

administration and at 5, 15 and 30 minutes of stopping this gas supplementation. Blood was

collected using heparin vacutainer tubes (BD Biosciences, NJ, USA) and immediately centri-

fuged for 3 minutes to separate plasma from red blood cells (RBC). Without any delay, both

plasma and RBC samples were frozen using liquid nitrogen, to preserve the NO metabolites.

Samples were stored at -80˚ Celsius until assayed. Samples for analysis were only thawed once

and the remainder discarded. No detectable nitrite was observed in the heparin vacutainer

tubes or in sample storage tubes. All precautions were taken to minimize nitrite loss during

the freezing / thawing procedure [41]. In addition, we tested the stability of nitrite levels during

the freezing / thawing procedure by measuring nitrite before freezing and after snap freezing

and thawing from a single individual and noted only a small variation in the nitrite concentra-

tion (fresh sample: 100.1 +2.6 nM and thawed sample: 101.4 +/- 4.8 nM (S1 Table)).

-Nitrite and nitrate determinations in plasma. Samples were deproteinated using metha-

nol precipitation. Immediately after thawing the plasma samples, two volumes of methanol

were added, and samples kept at -20˚ Celsius for at least 15 minutes to allow protein precipita-

tion. Samples were then spun down to remove the precipitated proteins. The supernatant was

then used for subsequent analyses. Nitrite was measured using ozone-based chemiluminescence

with the triiodide method and Sievers NO analyzer (GE Analytical Instruments, Boulder, CO,

USA) [42–44]. Briefly, the triiodide reagent was made using 1g of KCI and 0.65 g of iodine dis-

solved in 20 ml of distilled water, with the addition of 70 ml of acetic acid. A total of 6 ml of this

solution was used in the reaction chamber for nitrite conversion into NO. A standard curve was

generated using up to 500 nM of nitrite. We used 200ul aliquots of the sample to inject into the

reaction chamber. Since the volume of the reaction chamber would alter over time, we limited

the number of injections but kept the samples from each subject together. At the beginning

with each fresh reagent in the reaction chamber, we ran a standard and one after the last sample.

The levels of these standards were similar and so suggested the reagent was still sufficiently

active. A similar method was used for detection of nitrate, with the only difference that the

Nitric oxide metabolites in healthy subjects
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reagent was a saturated solution of vanadium (III) chloride (0.6 g in 100 ml of 1N HCl), heated

to 94˚ C [45, 46]. A standard curve was generated using nitrate up to 25 uM.

-SNO-Hb and Hb:[Fe]NO measurement in RBCs. RBC samples were assayed for total, Fe-

bound and thiol-bound NO (SNO) content by photolysis/chemiluminescence, as described previ-

ously [47, 48]. Briefly, samples were thawed (2 min, 37C), fully lysed (addition of ddH2O/vortex),

and centrifuged (25,000 g, 5 min, 4C) to remove cell debris and membrane. Supernatant was run

through a Sephadex G25 spin column, following which [Hb] was measured [49]. To selectively

remove thiol bound NO (SNO), samples were incubated ± HgCl2 (6 fold molar excess over [Hb

thiol]; tetramer basis)[50, 51]. Following this minimal processing, samples were injected into an

HPLC pump (Analytical Scientific Instruments, Richmond, CA) purged with degassed, deionized

water as the mobile phase, and carried (1 ml/min) to a custom photolysis system (Technosoft, Mor-

risville, NC, USA) comprising a quartz coil looped around a mercury arc lamp (Hanovia, Inc., New-

ark, NJ). This photolytically liberates bound NO, that is then subsequently carried in an inert gas

stream (helium), to a high-resolution chemiluminescence NO analyzer (TEA 810, Ellutia, Charles-

ton, SC, USA). Aqueous phase and higher oxides of nitrogen were removed in a series of cold traps

interposed between the photolysis and analyzer units. A GSNO standard curve was performed each

day with analysis of sample area under curve (Clarity, Madison, CT). Unknown sample areas were

read off the standard curve, to determine NO content. Total NO content was derived from vehicle

incubated sample. Fe-NO was obtained from the sample incubated with HgCl2. SNO-Hb was calcu-

lated from the difference between these two signals. Measurements of RBC NO are presented as a

molar ratio of NO to Hb. Determinations were done in duplicate and an average reported [47, 48].

-Bicarbonate determination. Bicarbonate was measured using a Bicarbonate reagent kit

on a Cobas C501 analyzer (Roche Diagnostics, Indianapolis, IN). Briefly, phosphoenolpyr-

uvate in the presence of phosphoenolpyruvate carboxylase to produces oxaloacetate and phos-

phate. The oxaloacetate produced is coupled with NADH in the presence of malate

dehydrogenase to produce malate and NAD. The consumption of NADH is measured 320 nm

to 400 nm and the bicarbonate concentration determined.

-Cutaneous microvascular studies. Subjects were tested in a sitting position with the fore-

arm at the level of the heart. We measured the subjects’ heart rate, blood pressure, and pulse oxy-

gen saturation. We carefully prepped the skin of the anterior aspect of the forearm, 5 cm distal to

the antecubital fossa and away from visible veins or skin abrasion [52]. Great care was taken to

create similar experimental conditions to ensure regional and temporal reproducibility.

a) Skin microvascular flow

We estimated the skin microvascular flow during the last minute of NO inhalation and for 5

minutes after its discontinuation, using Laser Doppler flowmetry [53] with the PeriFlux system

5000 (Perimed, Järfälla, Sweden) and an integrating probe (PF 413) [54]. We continuously

recorded data from the instrument for off-line review, using the PeriSoft for Windows soft-

ware. Flow measurements are expressed as arbitrary perfusion units (PU) averaged over 30

seconds of recording. Probes were calibrated using a motility standard consisting of a colloidal

suspension of polystyrene particles (PF 1000). Laser Doppler flowmetry assesses the skin capil-

lary perfusion (depth of skin penetration of about 1mm) by measuring the Doppler shift

induced by the laser light scattering of moving red blood cells. Perfusion is defined as the con-

centration of red blood cells times their average velocity [55, 56].

b) Iontophoresis of acetylcholine and sodium nitroprusside

Iontophoresis was performed using the thermostatic probe PF 481, the periIont micropharma-

cology system, the drug delivery electrodes PF 383 and the dispersive electrodes PF 384

Nitric oxide metabolites in healthy subjects
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(Perimed, Järfälla, Sweden) [52]. At different skin sites, we placed 180 μL of either acetylcho-

line 1% (Sigma-Aldrich, St Louis, MO, USA) or sodium nitroprusside 1% (Marathon Pharma-

ceuticals, LLC, Northbrook, IL, USA) in the sponge of the drug-delivery electrode. We

iontophoresed these agents at 40 uA for 5 minutes. We used a positive polarity for acetylcho-

line and negative polarity for sodium nitroprusside. Both tests were performed before and dur-

ing NO administration (at minutes 5 and 9 for acetylcholine and sodium nitroprusside,

respectively). Current-induced vasodilation was prevented by limiting the current density

to< 0.01 mA/cm2 [57]. During each test, we measured changes in PU and monitored skin

resistance and temperature. Skin resistance was determined by the periIont micropharmacol-

ogy system and recorded before and during the iontophoresis of medications, since variations

in the skin resistance may affect the current flow and the transport of vasoactive mediators.

We believe that the cutaneous iontophoresis of vasoactive agents has not affected the levels

of NO metabolites, given its local effect, low dose and the fact that blood was obtained in the

opposite arm. Additionally, we have previously shown that using our methodology levels of

iontophoresed agents are not detectable in blood [52].

Statistics

Continuous data are presented as median (interquartile range (IQR)). Categorical data are

summarized as discrete values and percentages (n (%)). Results of the iontophoresis tests are

expressed as peak PUs or percentage of variation from baseline. Independent continuous sam-

ples were compared using Wilcoxon-Mann-Whitney test. Paired continuous samples were

tested with Wilcoxon signed-rank test and Bonferroni correction. We tested repeated mea-

surements with the nonparametric Friedman test. Relationships between normally distributed

variables were assessed using the Spearman rank correlation coefficient. All p values are two-

tailed and a value of< 0.05 was considered significant. The statistical analyses were performed

using the statistical package IBM SPSS, version 20 (IBM; Armonk, New York) and MedCalc,

version 14.12.0 (Ostend, Belgium).

Results

a) Nitric oxide metabolites

We included 15 subjects with a median (IQR) age of 37 (31–47) years, of whom 13 (87%) were

females. We tested nitrite, nitrate, SNO-Hb and Hb:[Fe]NO before, during and after NO

administration (Table 1 and Fig 1). The basal levels of nitrite and SNO-Hb are consistent to

those found by previous investigators [48, 58–61]. The Friedman test showed significant differ-

ences among the various time points in nitrite, total RBC NO, Hb:[Fe]NO and SNO-Hb

(Table 1). We observed a significant increase in nitrite (median (IQR) difference of 7 (-2 –+19)

%, p = 0.048), total RBC NO (29 (-12 –+111) %, p = 0.02) and SNO-Hb (median (IQR) differ-

ence of 59 (-15 - +282) %, p = 0.02) during NO inhalation compared to baseline. Nitrite, total

RBC NO and SNO-Hb levels were higher 5 minutes after the discontinuation of NO compared

to baseline (28 (13–52) %, p = 0.009, 46 (3–96) %, p = 0.006, and 50 (-16 –+329) %, p = 0.03,

respectively). Interestingly, the levels of nitrite peaked at 5 minutes; meanwhile, total RBC NO

and SNO-Hb continued to increase during the 30 minutes after discontinuing NO.

b) Bicarbonate determinations

In 11 subjects we measured bicarbonate in plasma before and 30 minutes after NO inhalation.

The median (IQR) before NO inhalation and 30 minutes after discontinuation were 20.6

(19.8–23.4) and 20.5 (18.5–20.8), respectively (p = 0.04). The change in bicarbonate at 30

Nitric oxide metabolites in healthy subjects
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minutes was negatively associated with the change in SNO-Hb; however this association did

not reach statistical significance.

c) Forearm microvascular studies

The skin microvascular flow was not significantly different at baseline than during NO inhala-

tion (Table 2). During NO inhalation, compared to before NO inhalation, the peak PU

increased 62.8 (-218 - + 333.7) % points during the iontophoresis of acetylcholine and 95.8

(-123 - + 262.1) % points during the iontophoresis of sodium nitroprusside; changes that did

not achieve statistical significance (Table 2).

Before NO inhalation, the peak PU and increase in PU during acetylcholine iontophoresis

showed a negative association with the level of SNO-Hb (r: -0.57, p = 0.03 and r: -0.61,

p = 0.03, respectively). Similarly, during NO administration, the peak PU and increase in PU

during acetylcholine iontophoresis was negatively associated to the level of SNO-Hb under the

same condition (r: -0.54, p = 0.04 and r: -0.51, p = 0.05, respectively). The change in peak PU

during acetylcholine before and during NO inhalation was inversely related to the change in

SNO-Hb (r: -0.57, p = 0.03). The levels of nitrite were not significantly associated with the ace-

tylcholine iontophoresis response before or during NO administration.

Discussion

It is postulated that many of the systemic responses to inhaled NO are derived from its metab-

olites such as nitrite, S-nitrosothiols and possibly dinitrosyl iron complexes (DNICs). Both

nitrite and S-nitrosothiols can be converted back to NO to deliver this molecule to sites remote

to its generation. Nitrite can be reduced to NO by nitrite reductases and by low pH in ischemic

tissues, whereas SNO-Hb can transfer NO+ under low oxygen concentrations in the peripheral

circulation [14] (Fig 2). In the present study, we investigated how these metabolites changed

during and 30 minutes after discontinuing a 15 minute inhalation of NO. To the best of our

knowledge, the kinetics of inhaled NO increasing levels of SNO-Hb, have not been measured.

We noted that the inhalation of NO led to a significant increase in nitrite and SNO-Hb. Nitrite

peaked at 5 minutes and SNO-Hb peaked beyond 15 minutes, of discontinuing the NO

Table 1. Determinations of NO metabolites in plasma and RBC.

Baseline

Median

(IQR)

During NO

inhalation�

Median (IQR)

After 5 min of NO

discontinuation

Median (IQR)

After15 min of NO

discontinuation

Median (IQR)

After 30 min of NO

discontinuation

Median (IQR)

P (Friedman

test)

Plasma n 15 15 15 15 14^

Nitrate (uM) 25.4 (20.9–

35.0)

26.6 (21.4–35.4) 27.3 (22.8–35.3) 27.4 (20.8–33.7) 26.9 (20.2–34.3) 0.07

Nitrite (nM) 102.8 (86.3–

117.8)

114.0 (87.0–

129.0)

131.3 (104.3–169.5) 119.3 (84.8–141.8) 115.5 (105.8–127.5) <0.001

RBC Total NO (moles

NO:Hb x 10−3)

13.2 (8.0–

15.7)

15.3 (11.4–26.2) 15.2 (9.9–21.6) 18.2 (11.3–32.6) 18.7 (12.8–33.1) 0.005

NO[Fe]Hb (moles

NO:Hb x 10−3)

7.1 (3.0–

11.8)

7.1 (3.7–14.6) 9.0 (2.8–12.2) 8.2 (4.7–9.8) 8.3 (5.4–19.0) <0.001

SNO-Hb (moles

NO:Hb x 10−3)

4.7 (2.5–5.8) 7.8 (4.1–13.1) 7.3 (4.5–14.8) 10.3 (5.6–18.2) 10.6 (5.3–15.5) 0.005

�blood sample obtained at 15 minutes of continuous inhaled NO administration.

^ One patient had no blood sample 30 minutes after NO discontinuation.

Abbreviations: Hb:[Fe]NO: nitrosyl Hb, IQR interquartile range, NO: nitric oxide, O2: oxygen, SNO-Hb: S-nitrosothiol Hb.

https://doi.org/10.1371/journal.pone.0221777.t001
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inhalation. In fact, nitrite levels rapidly declined after its peak (consistent with the suggested

half-life of 30 minutes) [59, 62]; while SNO-Hb levels remained elevated for at least 30 minutes

after NO discontinuation, theoretically storing the NO signal for a longer time and possibly

increasing the minute ventilation.

Conventionally, most excess inhaled NO reacts with Fe++ Hb and oxygen to form methe-

moglobin and nitrate; the methemoglobin is then recycled by methemoglobin reductases [40,

63]. Strikingly, we did not notice a significant change in plasma nitrate during NO inhalation.

Many factors can affect nitrate levels, including diet and microbiome [64]. Inhalation of NO at

the concentration given would produce at best a small and likely non-significant change given

the inherent noise of the assay used.

Fig 1. Box plots of plasma nitrite and RBC SNO-Hb before, during and after NO inhalation. The red line connects the median values at the

different time points.

https://doi.org/10.1371/journal.pone.0221777.g001
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In mice, the inhalation of NO led to increases in nitrate and nitrite in plasma as well as

SNO-Hb and Hb:[Fe]NO in erythrocytes [65], with a plateau achieved within 15 minutes of

administering NO [65]. In patients undergoing liver transplantation [66], inhaled NO pro-

duced an increase in plasma nitrate and nitrite as well as erythrocyte Hb:[Fe]NO, but not

Table 2. Forearm microvascular studies at baseline and during NO inhalation.

Variables Baseline

Median (IQR)

During NO inhalation

Median (IQR)

P (Wilcoxon signed-rank test)

Cutaneous PU 13.6 (11.8–16.8) 14.6 (9.8–20.6) 0.28

Acetylcholine iontophoresis

Baseline PU 5.6 (4.3–7.2) 4.5 (3.6–5.5) 0.33

Peak PU 49.6 (28.2–60.8) 47.4 (37.6–51.8) 0.87

Percentage change in PU 600 (420–965) 991 (363–1249) 0.57

Skin resistance 215 (175–279) 207 (165–261) 0.42

Sodium nitroprusside iontophoresis

Baseline PU 4.1 (3.6–7.6) 4.2 (2.8–5.3) 0.31

Peak PU 17.1 (10.3–21.1) 11.6 (7.1–25.9) 0.96

Percentage change in PU 190 (127–407) 231 (107–424) 0.36

Skin resistance 241 (220–251) 222 (208–272) 0.49

https://doi.org/10.1371/journal.pone.0221777.t002

Fig 2. Mechanisms by which inhaled NO acts on the systemic microcirculation. Abbreviations: Hb: hemoglobin, Hb:[Fe]NO: nitrosyl Hb, Met-Hb:

methemoglobin, NO: nitric oxide, NOS: nitric oxide synthase, O2: oxygen, ROS: reactive oxygen species, RSH: alkyl thiols, RSNO: S nitrosothiols, SNO-Hb: S-

nitrosothiol Hb, XOR: xanthine oxidoreductase.

https://doi.org/10.1371/journal.pone.0221777.g002
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SNO-Hb. In contrast, our study showed an increase in SNO-Hb during NO inhalation, and

the discrepancy may be in part related to the difficulties in measuring SNO-Hb using iodine-

based methods [67], NO dosing and length of NO administration.

Initial studies suggested that the effects of inhaled NO were confined to the lungs given its

high affinity for the heme moiety of Hb [68]. Subsequent investigations, in animals, showed

that inhaled NO inhibits platelet function [69], increases glomerular filtration rate[70], reduces

neointimal formation in injured arteries [71], enhances coronary artery patency after throm-

bolysis [72], reduces myocardial infarction size [73], and maintains mesenteric blood flow in

intestinal ischemia-reperfusion injury [74]. Meanwhile, in humans, inhaled NO was noted to

reduce muscle inflammation during limb ischemia [75] and ischemia-reperfusion injury dur-

ing liver transplantation [66]. Of concern, long-term follow-up of infants exposed to inhaled

NO suggests an increased cancer risk later in childhood [27]. Nitric oxide itself can be muta-

genic, but most authors argue that NO radical is not present in any relevant concentration in

the presence of mM vascular concentrations of Hb. The exception may be in ischemic tissue,

where nitrite could be converted to NO by protonation. Thus, the peripheral oncogenic effects

of inhaled NO could result from delivery of nitrite to ischemic tissues [76]. The peripheral

physiologic effects of inhaled NO are typically dose- and oxygen tension-dependent and can

occur without systemic hemodynamic changes [26, 77].

Nitric oxide equivalents are transferred as NO+ from deoxyhemoglobin to low molecular

weight thiols in erythrocytes [14, 78–81]. These low molecular weight S-nitrosothiols are hyp-

oxia-mimetic, signaling Hb R to T conformational change [14, 78–81]. One of these hypoxia-

mimetic effects is to increase minute ventilation [78, 82, 83]. To maintain pH, hyperventila-

tion-induced respiratory alkalosis will normally result in decreased bicarbonate levels. A

decrease in steady state bicarbonate of 0.1 to maintain steady-state pH, by Henderson-Hassel-

balch, corresponds to a decrease in steady state pCO2 of 0.5 mmHg. By Dubois, this corre-

sponds to a steady increase in minute ventilation of ~ 0.5 litres per minute at steady state pO2.

Though this normal physiology is not observed in critically ill patients who are mechanically

ventilated, we were able here, uniquely, to measure the decrease in bicarbonate associated with

excess NO-hemoglobin loading in spontaneously breathing, healthy subjects.

The iontophoresis of acetylcholine and sodium nitroprusside test the microvascular endo-

thelial-dependent and independent vasodilation, respectively [84]. Acetylcholine induces vaso-

dilation via the endothelial production of NO and prostanoids, pathways that likely participate

in enzymatic cross-talk [85]. Sodium nitroprusside reacts with tissue sulfhydryl groups to pro-

duce NO directly (NO donor) [85]. In our study, the inhalation of NO did not significantly

affect the microvascular cutaneous perfusion or the response to the iontophoresis of acetylcho-

line or sodium nitroprusside. These findings could represent that the microvascular studies

used were not sensitive and/or precise enough to detect the systemic microvascular effects of

inhaled NO, and/or the normal tissue oxygen tension of skin tissue. Another explanation

could be that inhaled NO elicits a more pronounced microvascular response in states of oxida-

tive stress, hypoxic tissues or decreased NO production than in healthy controls [74]. In fact,

Cannon III et al [40] noted that NO inhalation produced minimal effects on the forearm blood

flow; however, inhaled NO reverted the reduced forearm blood flow caused by the blockade of

NO synthesis with NG-monomethyl-L-arginine [40].

Prior investigations in healthy individuals showed that stimulation with acetylcholine aug-

mented forearm blood flow and venous nitrite [64, 86]. Although we showed no significant

changes in the microvascular studies during the inhalation of NO, we noted an inverse associa-

tion between the levels of SNO-Hb and the response to acetylcholine iontophoresis both before

and during NO administration. A higher RBC level of SNO-Hb may represent a higher NO

state with less microvascular response to the iontophoresis of acetylcholine. Interestingly, the
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more pronounced the increase in SNO-Hb during NO inhalation the lower the change in

response to acetylcholine iontophoresis between baseline and NO administration.

Note that under conditions of extreme oxidative stress in the lungs, i.e. acute respiratory

distress syndrome, inhaled NO has adverse effects on renal function, whereas during heart sur-

gery without lung injury, inhaled NO may benefit renal function [28, 29]. This difference sug-

gests that airway chemistry is important to the metabolic fate and systemic effects of inhaled

NO [14] (Fig 2). Consistent with this hypothesis, SNO-Hb levels continued to increase after

the inhaled NO was discontinued. The duration of this increase was longer than a circulatory

cycle, arguing against simple transfer of NO from Fe++ Hb to Hb-thiol as the principle reason

for this steady post-dose increase [26]; and stoichiometrically, the increase in SNO-Hb

occurred without any loss of RBC NO. These data almost certainly argue for a capacitor in the

circuit: a reservoir of SNO in the airways that stores NO+ equivalents and transfers them to the

blood. In fact, airway reduced thiol levels are in excess of 100 μM, and formation of a major

SNO reservoir from endogenous thiols has previously been demonstrated in the distal airway

during NO inhalation in humans and in pigs [87, 88].

Limitations of the current study include a) a relatively small number of healthy volunteers

(n = 15) that might have prevented the identification of significant differences in microvascu-

lar studies or NO metabolites, and b) microvascular studies were not repeated after the discon-

tinuation of NO when the levels of nitrite and SNO-Hb peaked. However, for the first time, we

rigorously measured in healthy volunteers both nitrite and SNO-Hb at baseline, during and up

to 30 minutes after the discontinuation of NO inhalation. Our data show that both nitrite in

plasma and SNO-Hb in RBC increase during and immediately after NO inhalation and that

these metabolites may affect studies that test the NO pathway in the systemic

microvasculature.

Conclusions

For the first time we measured the kinetics of nitrite and SNO-Hb during NO inhalation and

after its discontinuation. Interestingly, the kinetics of these NO metabolites are not identical.

Nitrite increases first, followed by a more sustained increase in Hb-SNO, likely reflecting the

capacitor-like reservoir of SNO in the lung. Nitrite, Hb-SNO and possibly DNICs could be a

mobile reservoir of NO with implications on the systemic microvasculature.

Supporting information

S1 Table. Effect of freezing/thawing on nitrite measurements. This is a table with the mea-

surements of nitrite from samples that were fresh or frozen/thawed from a single individual.

This demonstrated that the nitrite levels were not affected by freezing and thawing under the

condition we used.

(XLSX)

S2 Table. Measurement of SNO, Nitrite, and Nitrate. This excel sheet contains the data for

the measurements of SNO, nitrite and nitrate for the different samples. It also contains the

standard curves along with the associated R2 values and the calculated values of the samples.

(XLSX)

S3 Table. Collated data for NOx metabolites, CO2 and iontophoresis related measure-

ments. In addition to the different NOx metabolites, CO2 and iontophoresis results it also

includes data related to age, gender and BMI status of the subjects.

(XLSX)
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