22 research outputs found

    Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility

    Get PDF
    Conventional water treatment facilities are the norm for producing potable water for U.S. metropolitan areas. Rapidly-growing urban populations, competing demands for water, imperfect water markets, and uncertainty of future water supplies contribute to high interests in alternative sources of potable water for many U.S. municipalities. In situations where multiple supply alternatives exist, properly analyzing which alternative is the most-economically efficient over the course of its useful life requires a sound economic and financial analysis of each alternative using consistent methodology. This thesis discusses such methodology and provides an assessment of the life-cycle costs of conventional water treatment using actual data from an operating surface-water treatment facility located in McAllen, Texas: the McAllen Northwest facility. This facility has a maximum-designed operating capacity of 8.25 million gallons per day (mgd), but due to required shutdown time and other limitations, it is currently operating at 78% of the designed capacity (6.44 mgd). The economic and financial life-cycle costs associated with constructing and operating the McAllen Northwest facility are analyzed using a newly-developed Excel 2 spreadsheet model, CITY H O ECONOMICS . Although specific results are applicable only to the McAllen Northwest facility, the baseline results of 771.67/acre-foot (acft)/ yr {2.37/1,000 gallons/yr} for this analysis provide insight regarding the life-cycle costs for conventional surface-water treatment. The baseline results are deterministic (i.e., noninclusive of risk/uncertainty about datainput values), but are expanded to include sensitivity analyses with respect to several critical factors including the facility’s useful life, water rights costs, initial construction costs, and annual operations and maintenance, chemical, and energy costs. For example, alternative costs for water rights associated with sourcing water for conventional treatment facilities are considered relative to the assumed baseline cost of 2,300/acft,withresultsrangingfromalowof2,300/ac-ft, with results ranging from a low of 653.34/ac-ft/yr (when water rights are 2,000/acft)toahighof2,000/ac-ft) to a high of 1,061.83/ac-ft/yr (when water rights are 2,600/acft).Furthermore,modificationstokeydatainputparametersandresultsareincludedforamoreconsistentbasisofcomparisontoenablecomparisonsacrossfacilitiesand/ortechnologies.Themodifiedresults,whichareconsideredappropriatetocomparetoothersimilarlycalculatedvalues,are2,600/ac-ft). Furthermore, modifications to key data-input parameters and results are included for a more consistent basis of comparison to enable comparisons across facilities and/or technologies. The modified results, which are considered appropriate to compare to other similarly calculated values, are 667.74/ac-ft/yr {2.05/1,000 gallons/yr}

    Identifying Most Economic Sources of Potable Water-Case Study in the Rio Grande Valley of Texas

    Get PDF
    Economic analysis and capital budgeting methods are utilized to analyze the costs of desalinated water relative to conventionally-treated surface water originating from the Rio Grande. Sensitivity analyses are used to evaluate alternative prices for water rights associated with sourcing water for conventional municipal treatment plants

    Expected Economic Benefits of the El Morillo Drain

    Get PDF
    The study of the benefits (damages averted) attributable to the El Morillo Drain encompasses U.S. municipalities, industry, and agriculture. It is conservatively estimated that the annual direct benefits to residents of South Texas ranges between 16.3and16.3 and 30.3 million. This does not include effects on landscapes, industry that is dependant on low saline water, and water treatment plants. Accounting for the costs to agriculture from crop losses of about 26.7million,thetotalannualimpactoftheElMorilloDrainforSouthTexasisbetween26.7 million, the total annual impact of the El Morillo Drain for South Texas is between 43 and $57 million. Such economic impact assessments are indicative that maintenance of the Drain is a highly-beneficial activity, leaving little doubt that it is essential that the drain be updated, maintained, and operated. Certainly as South Texas population increases and demand for high quality water increases, the value of the El Morillo Drain will increase

    An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Delta Lake Irrigation District

    Get PDF
    Population expansion and water shortfalls have placed the Texas Lower Rio Grande Valley (Valley) center stage in water publicity. The unique characteristics and lack of public knowledge on how irrigation districts divert and convey water from the Rio Grande to municipal, industrial, and agriculture consumers have precipitated questions regarding the operations and makeup of these districts. Differences between and similarities across irrigation districts can be partially attributed to the topography, water-delivery infrastructure system, past financial decisions, and population demographics and clientele base of each irrigation district. Delta Lake Irrigation District (DLID) is one of the 29 irrigation districts in the Valley. This study presents an overview of DLID that includes a brief historical background, a description of the District, and discussion of the District’s current operations. Specific information in the report details how the District diverts and delivers its allocated water from the Rio Grande, how it is used (i.e., municipal, industry, and agriculture), and mechanisms for allocation within and outside the District. The uniqueness of the Lower Rio Grande Valley irrigation districts requires an understanding of their origins and operating mannerisms to explain their overall institutional effects. Through unlocking some of the conundrum associated with these individual irrigation districts, policymakers and other interested stakeholders will have a better perception of the culture and evolution that surround these unique districts, thereby facilitating improved policy-making decisions affecting the region’s water supply and usage

    An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Harlingen Irrigation District Cameron County No. 1

    Get PDF
    Population expansion and water shortfalls have placed the Texas Lower Rio Grande Valley (Valley) center stage in water publicity. The unique characteristics and lack of public knowledge on how irrigation districts divert and convey water from the Rio Grande to municipal, industrial, and agricultural consumers have precipitated questions regarding the operations and makeup of these districts. Differences between and similarities across irrigation districts can be partially attributed to the topography, water-delivery infrastructure system, past financial decisions, and population demographics and clientele base of each irrigation district. Harlingen Irrigation District Cameron County No. 1 (HIDCC1) is one of the 29 irrigation districts in the Valley. This study presents an overview of HIDCC1 that includes a brief historical background, a description of the District, and discussion of the District’s current operations. Specific information in the report details how the District diverts and delivers its allocated water from the Rio Grande, how it is used (i.e., municipal, industry, and agriculture), and mechanisms for allocation within and outside the District. The uniqueness of the Lower Rio Grande Valley irrigation districts requires an understanding of their origins and operating mannerisms to explain their overall institutional effects. Through unlocking some of the conundrum associated with these individual irrigation districts, policymakers and other interested stakeholders will have a better perception of the culture and evolution that surround these unique districts,thereby facilitating improved policy-making decisions affecting the region’s water supply and usage

    Subjective vision assessment in companion dogs using dogVLQ demonstrates age-associated visual dysfunction

    Get PDF
    IntroductionDim light vision as assessed by proxy and clinical tools is commonly impaired in older humans and impacts quality of life. Although proxy visual assessment tools have been developed for dogs, it is unclear if they are sensitive enough to detect subtle visual dysfunction in older dogs. We sought to determine if a newly designed proxy visual function questionnaire could detect age-associated differences in visual behaviors in varying lighting conditions in dogs.MethodsA 27-item questionnaire (the dog variable lighting questionnaire, dogVLQ) was designed to assess visual behavior in dogs in different lighting settings. We conducted the dogVLQ, a previously validated visual function questionnaire the dog vision impairment score and performed light- and dark-adapted electroretinography (ERG) on a subset of dogs. Questionnaire scores were analyzed for dog age associations using correlation analysis.ResultsQuestionnaire responses from 235 dog owners were obtained (122 female, 112 male dogs), 79 of which underwent ERG (43 female, 36 male dogs). Bright light visual behavior was significantly associated with light-adapted bright flash ERG amplitudes, visual behavior in near darkness was associated with dark-adapted ERG amplitudes. The dogVLQ identified worse vision in older dogs in bright light, dim light, and darkness; predicted onset was younger for vision in near darkness. Older dogs had more difficulty navigating transitions between lighting conditions.DiscussionSubjective dog owner assessment of visual function associates with objective measurement of retinal function in dogs and supports reduced vision-mediated behaviors in older dogs

    Economies of Size in Municipal Water-Treatment Technologies: A Texas Lower Rio Grande Valley Case Study

    Get PDF
    As the U.S. population continues to increase, the priority on planning for future water quantity and quality becomes more important. Historically, many municipalities have primarily relied upon surface water as their major source of drinking water. In recent years, however, technological advancements have improved the economic viability of reverse-osmosis (RO) desalination of brackish-groundwater as a potable water source. By including brackishgroundwater, there may be an alternative water source that provides municipalities an opportunity to hedge against droughts, political shortfalls, and protection from potential surfacewater contamination. In addition to selecting a water-treatment technology, municipalities and their associated water planners must determine the appropriate facility size, location, etc. To assist in these issues, this research investigates and reports on economies of size for both conventional surface-water treatment and brackish-groundwater desalination by using results from four water-treatment facilities in the Texas Lower Rio Grande Valley (LRGV). The methodology and associated results herein may have direct implications on future water planning as highlighting the most economically-efficient alternative(s) is a key objective. In this study, economic and financial life-cycle costs are calculated for a “small” conventional surface-water facility (i.e., 2.0 million gallons per day (mgd) Olmito facility) and a “small” brackish-groundwater desalination facility (i.e., 1.13 mgd La Sara facility). Thereafter, these results are merged with other, prior life-cycle cost analyses’ results for a “medium” conventional surface-water facility (i.e., 8.25 mgd McAllen Northwest facility) and a “medium” brackish-groundwater desalination facility (i.e., 7.5 mgd Southmost facility). The combined data allow for examination of any apparent economies of size amongst the conventional surface-water facilities and the brackish-groundwater desalination facilities. This research utilized the CITY H20 ECONOMICS and the DESAL ECONOMICS © © Excel® spreadsheet models developed by agricultural economists with Texas AgriLife Research and Texas AgriLife Extension Service. The life-cycle costs calculated within these spreadsheet models provide input for work which subsequently provides the estimations of economies of size. Although the economies of size results are only based on four facilities and are only applicable to the Texas LRGV, the results are nonetheless useful. In short, it is determined that economies of size are apparent in conventional surface-water treatment and constant economies of size are apparent in brackish-groundwater desalination. Further, based on modified life-cycle costs (which seek to more-precisely compare across water-treatment technologies and/or facilities), this research also concludes that reverse-osmosis (RO) desalination of brackish-groundwater is economically competitive with conventional surface-water treatment in this region

    First Sagittarius A* Event Horizon Telescope results. II. EHT and multiwavelength observations, data processing, and calibration

    Get PDF
    We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μas, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.http://iopscience.iop.org/2041-8205Physic
    corecore