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ABSTRACT

Economic Costs of Conventional Surface-Water Treatment:

 A Case Study of the McAllen Northwest Facility. (May 2008)

Callie Sue Rogers, B.S., Texas A&M University

Chair of Advisory Committee: Dr. M. Edward Rister

Conventional water treatment facilities are the norm for producing potable water for

U.S. metropolitan areas.  Rapidly-growing urban populations, competing demands for

water, imperfect water markets, and uncertainty of future water supplies contribute to

high interests in alternative sources of potable water for many U.S. municipalities.  In

situations where multiple supply alternatives exist, properly analyzing which alternative

is the most-economically efficient over the course of its useful life requires a sound

economic and financial analysis of each alternative using consistent methodology.  This

thesis discusses such methodology and provides an assessment of the life-cycle costs of

conventional water treatment using actual data from an operating surface-water

treatment facility located in McAllen, Texas: the McAllen Northwest facility.  This

facility has a maximum-designed operating capacity of 8.25 million gallons per day

(mgd), but due to required shutdown time and other limitations, it is currently operating

at 78% of the designed capacity (6.44 mgd).
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The economic and financial life-cycle costs associated with constructing and operating

®the McAllen Northwest facility are analyzed using a newly-developed Excel

2spreadsheet model, CITY H O ECONOMICS .  Although specific results are applicable©

only to the McAllen Northwest facility, the baseline results of $771.67/acre-foot (ac-

ft)/yr {$2.37/1,000 gallons/yr} for this analysis provide insight regarding the life-cycle

costs for conventional surface-water treatment.  

The baseline results are deterministic (i.e., noninclusive of risk/uncertainty about data-

input values), but are expanded to include sensitivity analyses with respect to several

critical factors including the facility’s useful life, water rights costs, initial construction

costs, and annual operations and maintenance, chemical, and energy costs.  For example,

alternative costs for water rights associated with sourcing water for conventional

treatment facilities are considered relative to the assumed baseline cost of $2,300/ac-ft,

with results ranging from a low of $653.34/ac-ft/yr (when water rights are $2,000/ac-ft)

to a high of $1,061.83/ac-ft/yr (when water rights are $2,600/ac-ft).  Furthermore,

modifications to key data-input parameters and results are included for a more consistent

basis of comparison to enable comparisons across facilities and/or technologies.  The

modified results, which are considered appropriate to compare to other similarly

calculated values, are $667.74/ac-ft/yr {2.05/1,000 gallons/yr}.
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This thesis follows the style of American Journal of Agricultural Economics.  

The author of this thesis chose to employ a section method in which the paper is broken down into   1  

major sections rather than chapters.

 As stated in Sturdivant et al. (2008), “Shortfalls in water deliveries from Mexico are in reference to The2

1944 Treaty, a binational treaty in which the U.S. annually provides Mexico with 1.5 million acre feet (ac-

ft) from the Colorado River, while Mexico in return annually provides the U.S. with 350,000 ac-ft from the

Rio Grande.  As of September 30, 2005, Mexico had paid its water debt which accumulated from 1992-

2002 (Spencer 2005).”

INTRODUCTION1

An issue receiving widespread attention is the availability of potable (drinkable) water. 

Growth in population and region-specific gains in affluence are resulting in an ever-

increasing demand for water by all sectors of the economy.  With the population of

Texas expected to double by the year 2050 (Texas Water Development Board 2006),

water quality and availability are of major concern.  Water issues are especially acute in

the Lower Rio Grande Valley of Texas (Valley).  According to the 2000 U.S. Census

Bureau, the Valley is the fourth-fastest-growing Metropolitan Statistical Area (MSA) in

the United States, with the McAllen-Edinburg-Mission area realizing a 49% population

growth from 1990 to 2000 (US Census Bureau 2000).  Rapid regional growth is

expected to continue into the future with an anticipated 2% annual growth rate for the

next 50 years (Rio Grande Regional Water Planning Group 2001).  This growth is

expected to result in a compounded 20% population increase over the next ten years and

a 143% increase over the projected 50 years.  This continuing growth, as well as a

prolonged drought, and difficulties in receiving full water deliveries from Mexico, has

resulted in increased competition for water and a heightened uncertainty of future

supplies.2
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 The majority of the groundwater in the Valley is brackish; therefore, the groundwater is not considered3

potable unless it is treated with a desalination process.  In order to determine if water is brackish, the

salinity of the water must be tested.  Salinity is measured by the “total dissolved solids” (TDS) content

which is reported in milligrams per liter (mg/l).  Water with a salinity between 1,000 and 10,000 mg/l is

considered brackish (Arroyo 2004).  The Texas Commission on Environmental Quality (TCEQ) sets the

maximum allowable TDS level at 1,000 mg/l. (TCEQ 2005).

The predominant water supply for the Valley is the Rio Grande (River), which serves as

a partial international boundary between the United States and Mexico, and supplies

approximately 87% of the municipal and industrial water (Rio Grande Regional Water

Planning Group 2001).  Using the Rio Grande as the source water, the norm for

producing potable water in the Valley is through conventional surface-water treatment

(Texas Commission on Environmental Quality 2008). 

To address the issue of meeting increasing water demand, water suppliers, water

managers, consulting engineers, and other regional and state stakeholders are

considering, evaluating, and implementing alternatives to conventional surface-water

treatment.  There are several strategies which can improve the available water supply in

the Valley, either by supply enhancement or increasing use efficiency.  Alternatives to

the predominance of diverted Rio Grande water (i.e., supply) include: groundwater

wells, wastewater reuse, desalination of seawater and/or brackish groundwater, and

rainwater harvesting.   Efficiency-in-use improvements being applied in the Valley3

include on-farm and municipal water-conservation measures, as well as improved

efficiency in irrigation district water-conveyance systems.



3

When prioritizing among the available alternatives, it is important to compare the

quality of water produced and to determine which option is the most cost efficient. 

Determining an objective, priority-ranked strategy of alternatives requires a sound and

common methodology if economic and financial efficiency is to be used to guide

expenditures for providing public water supplies.  Such a methodology is expected to

allow for an “apples-to-apples” comparison of alternatives, given each alternative will

likely differ in initial and continued costs, quantity and quality of output, expected

useful life, etc.  This thesis utilizes a Capital Budgeting - Net Present Value (NPV)

analysis, combined with the calculation of annuity equivalent (AE) measures, to achieve

the above criteria.  Using this combined approach allows for calculation of a single,

comprehensive, annual $/acre feet (ac-ft)/yr {or $/1,000 gallons/yr} life-cycle cost,

facilitating priority ranking among the available water supply alternatives.
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 Although similar, there are some differences between economic and financial costs.  The primary4

differences are economic costs include the opportunity cost of the investment; financial costs account for

the timing aspects of investments and related operating costs.

OBJECTIVES

This research addresses the economic and financial costs of one water supply alternative

available to the Valley: conventional surface-water treatment.   Conventional surface-4

water treatment was selected for analysis due to the large number of facilities currently

operating in the Valley, accounting for almost 90% of the region’s municipal water

supply (Texas Commission on Environmental Quality 2008).  Also, a review of current

literature reveals a wide range of cost estimates and methodology employed, as well as a

lack of original, recent (i.e., since the early 1980s) (Characklis 2007) economic studies

on this subject; therefore, there is a need for sound, contemporary economic analysis of

the life-cycle costs of producing potable water via conventional processes.

The scientific method calls for an identification of a null hypothesis when conducting

research.  One of the characteristics of a null hypothesis is that it cannot be proven.  A

researcher can only reject the null hypothesis or fail to reject the null hypothesis.  One

null hypothesis for this thesis is: “It is not possible to construct/develop a comprehensive

explanatory model and conduct an economic and financial analysis of conventional

surface-water treatment.”  A primary purpose of this study is to seek to reject this null

hypothesis by achieving the following objectives: (a) develop and exhibit the

capabilities of a spreadsheet model that could be used in analyses of conventional
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 “Type” refers to the large cost categories of (a) initial construction/investment, (b) continued costs, and5

(c) capital replacement expenses.  “Segment” refers to the individual expense areas that represent the

different functional segments of a water treatment facility (e.g., reservoir, filtration, storage, etc.).  “Item”

represents the expenses incurred annually in the operations and maintenance budget (e.g., electrical

energy, chemicals, labor, etc.).

surface-water treatment facilities, (b) provide a comprehensive economic and financial

analysis of the life-cycle costs of producing water at a conventional surface-water

treatment facility (McAllen Northwest), and delivering such water to a point(s) within

the municipal water delivery system, and (c) develop and document a template that

could be used in subsequent analyses for other similar operating or planned facilities. 

Although the estimated results of this study are applicable only to the McAllen

Northwest facility, this analysis provides insight into varied aspects of the costs of

conventional surface-water treatment.  The “comprehensive explanatory” nature of the

model relates to its ability to achieve an analysis that goes beyond identifying only the

bottom-line costs of production.  When comparing multiple facilities, it is valuable to

recognize not only which facility experiences the lowest (or highest) total or overall

costs of production, but also to determine which cost item(s) is (are) causing the

difference(s).  Therefore, this thesis breaks down the aggregate costs into specific types,

segments, and items to facilitate an in-depth analysis.5

A second null hypothesis of this report is: “Evaluations and comparisons of water

treatment facilities can be accomplished using primary (operating/case study) data.” 

Possible causes for rejecting this null hypothesis include identifying key data-input

parameters which should be normalized to facilitate development of results appropriate
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for comparison.  These results are expected to prove useful in serving as a means of

comparison between different conventional surface-water treatment facilities, as well as

with other alternatives of obtaining potable water (e.g., desalination, wastewater reuse,

etc.).
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PRIOR LITERATURE AND ECONOMIC STUDIES

 

Today, essentially the same technology is being applied in conventional surface-water

treatment facilities as has been used during the last several decades.  This explains why

there are few original economic studies that have been conducted since the late 1970s

and early 1980s (Characklis 2007).  Since the literature is generally outdated and a broad

spectrum of analytical methods was used in the past, historical cost estimates are

difficult to update to current day figures.  A review of selected literature is provided in

the following section.

Because of the varied nature of conventional surface-water treatment facilities’ designs,

(i.e., composed of many different components with varying designs for each), an idea

that is often reflected in the literature is that comparison of facility construction costs is

very difficult.  As Clark and Dorsey (1982) point out, “No two treatment plants are

alike”; therefore, costs for the construction of water treatment plants are very site-

specific and must be developed for individual circumstances.  The varying designs and

the components that are required in the conventional water treatment process depend

primarily on the quality and characteristics of the raw water (Jurenka, Martella, and

Rodriguez 2001).  In spite of these difficulties in generalizing the costs of construction, a

study conducted by Gumerman, Culp, and Hansen (1979) attempts to do just that. 

Specifically, their report breaks the costs of constructing a conventional water treatment

facility into the following eight cost categories: (1) excavation and site work, (2)
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 Although not clearly stated in the Gumerman, Culp, and Hansen (1979) report, it is inferred that the 206

years for the distribution of the construction costs is related to the financing for the retirement of the issued

bonds, not for the actual life of the facility.  In the research reported in this analysis of the McAllen

Northwest facility, a 50-year life for the facility is assumed based on discussions with the facility manager

(Santiago 2007).

 Turbidity is a measure of the amount of organic and inorganic particles in the water (Lloyd, Koenings,7

and Laperriere 1987).  Turbidity is measured using an instrument called a nephelometer, which calculates

a water’s turbidity by determining the amount of light that is deflected or scattered by the suspended

particles.  The scattering of light increases with a greater amount of particles or turbidity.

manufactured equipment, (3) concrete, (4) steel, (5) labor, (6) pipe and valves,

(7) electrical equipment and instrumentation, and (8) housing.  Gumerman, Culp, and

Hansen (1979) predicted the total construction cost for a five million gallon per day

(mgd) conventional treatment facility to equal $2,364,000, which, when amortized over

20 years at 7% interest rate, equates to $223,140 per year (in 1978 dollars).   A similar6

report by Qasim et al. (1992) updates the numbers provided by Gumerman, Culp, and

Hansen (1979) and establishes the annual “allocated” cost of construction to be

$410,000 (in 1992 dollars) for a similar facility.

Beyond the initial construction costs, other, annual ongoing expenses are important.

When examining annual ongoing expenses, one of the largest cost items for

conventional surface-water treatment is chemicals, which typically include various

coagulants, disinfectants, and pH adjusters (Dearmont, McCarl, and Tolman 1998).  The

quality of the source water, primarily the turbidity, determines the amount of chemicals

required for water treatment.   In 1998, Dearmont, McCarl, and Tolman (1998) reported7

chemical costs to be a function of source water turbidity, pH, groundwater

contamination, gallons produced, and average annual rainfall.  The study used data
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collected from 12 surface-water treatment facilities in Texas (Table 1).  Estimated

results are provided in Table 2.  Using a cross-sectional, time series model, Dearmont,

McCarl, and Tolman (1998) derived selected elasticity measures, including

determination that for every 1% increase in turbidity, chemical costs increase by 0.27%,

and that for every 1% increase in gallons produced, chemical costs increase by 0.04%.

The literature shows the total production costs for a conventional water treatment facility

to be a summation of construction capital costs and continuing operational costs.  The

Gumerman, Culp, and Hansen (1979) report also provides a breakdown of the total costs

of production for a five (5) mgd, a 40 mgd, and a 130 mgd conventional water treatment

facility (Figure 1 and Table 3).  The per-unit cost for a facility assumed to be operating

at 70% capacity was calculated as $0.32/1,000 gallons for the five (5) mgd facility,

$0.18/1,000 gallons for the 40 mgd facility, and $0.13/1,000 gallons for the 130 mgd

facility (in 1978 dollars) (Figure 1 and Table 3).  A report by Jurenka, Martella, and

Rodriguez (2001) provides similar predicted total costs of production for three facilities

in 2001 dollars (Table 4).  The results from both of these studies suggest the existence of

economies of size in the conventional water treatment process, meaning that as the

production output increases, the average total cost per unit of water produced decreases

(Kay, Edwards, and Duffy 2008).  This economic concept is seen in Figure 1, Table 3,

and Table 4, when the cost per unit of water declines as the total production capacity of

the facility expands.



10

Table 1.  Characteristics and Chemical Costs for Conventional Surface-Water
Treatment Facilities

Location

Average

Monthly

Production

(1,000 gal)

Raw Water

Turbiditya

Raw Water

pHb

Chemical

Cost per

Million

Gallons

Chemical

Cost per ac-

ft

Archer City 8,684 89.2 7.9 $ 71.46 $ 23.29

Ballinger 19,201 16.7 7.8 20.21 6.59c

Big Spring 177,000 35.0 8.2 25.66 8.36

Brenham 63,925 6.2 7.8 133.53 43.51

Edinburg 130,380 9.3 7.8 32.63 10.63c

Harlingen 1 190,460 36.2 8.2 197.51 64.36c

Harlingen 2 114,730 27.9 8.2 286.14 93.24c

Henrietta 15,654 25.8 8.2 134.65 43.88

Lubbock 881,930 7.3 8.4 32.32 10.53c

Temple 416,630 5.9 7.7 58.30 19.00

Waco 1 343,870 11.2 7.8 34.88 11.37

Waco 26 305,730 9.8 7.8 32.23 10.50

Source: Dearmont, McCarl, and Tolman (1998) and own modifications.

Turbidity is a measure of the amount of organic and inorganic particles in the water (Lloyd, Koenings,a

and Laperriere 1987).   

pH is a measurement of a substance’s hydrogen ion concentration and can range from zero to 14.  Ab

low pH level (below 6.5) indicates the water is soft, acidic, and corrosive which could lead to leaching

of materials from pipes.  A high pH level (above 8.5) indicates the water is hard, and could cause build-

ups of deposits in pipes (Water Systems Council 2004).  

Facility could potentially have groundwater contamination which requires extended chemicalc

treatment.
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Table 2.  Estimation Results for Variables Determining Chemical Costs  ofa

Conventional Surface-Water Treatment Facilitiesb

Variable 
Estimated
Coefficient t-Ratio

Constant -0.1314 -6.5053

Total Gallons Produced -1.6950*10 -4.1604-8

Turbidity * pH 1.3496*10 4.3989-4

(Turbidity * pH) -1.5130*10 -2.63752 -7

(Turbidity * pH) (5.5013*10 ) (1.9374)3 -11

Groundwater Contamination Dummy 0.0947 7.7713

Average Annual Rainfall 5.6024*10 8.3164-3

Source: Dearmont, McCarl, and Tolman (1998) and own modifications.

Chemical costs are presented in dollars per thousand gallons.a

The results for the model have a R  measure of 0.1865.b 2

Note: All terms were determined to be statistically significant except for the (Turbidity * pH)  term.3
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Source: Gumerman, Culp, and Hansen (1979) and own modifications.

Figure 1.  Estimation of production cost for conventional water treatment facilities
of varying size



13

Table 3.  Annual Cost for Conventional Water Treatment Facilities of Varying
Facility Size  a

Item

Annual Cost

5 mgd  Facilityb

Annual Cost

40 mgd  Facilityb

Annual Cost

130 mgd  Facilityb

Initial Constructionc

$223,140 $975,460 $2,458,890

Annual Expenses

-Labor 93,500 305,340 649,690

-Electricity 21,770 226,820 716,290

-Fuel 2,480 3,130 3,600

-Maintenance Material 13,930 55,900 122,070

-Chemicals 41,790 285,250 499,320

Total Annual Cost $396,610 $1,851,900 $4,399,890

Dollars per 1,000 gallons $0.31 $0.18 $0.13

Source: Gumerman, Culp, and Hansen (1979) and own modifications.

Annual costs are in nominal, 1979 terms and do not account for inflation.a

mgd is an abbreviation for million gallons per day.b

The construction costs are amortized over 20 years at a 7% interest rate.c

Table 4.  Total Production Costs for Conventional Water Treatment Facilities of
Varying Size

Product Flow of Facility
(in million gallons per day (mgd))

Total Production Cost 
(in $/1,000 gallons)

0.25 $1.70        

0.50 1.25        

0.75 1.05        

1.00 1.00        

Source: Jurenka, Martella, and Rodriguez (2001) and own modifications.
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Although the current literature concerning the costs of conventional water treatment

lacks modern, consistent research, literature related to the price charged for treated

water is on the rise.  A cursory search of recent articles relating to water rates reveals a

trend of increasing rates charged to consumers.  From Hawaii (Yager 2007) to New

York City (DePalma 2007), cities across the nation are increasing the rates charged for

potable water.  However, there is little reference to whether or not these increasing rates

have any relation to the actual costs of producing the potable water.  Traditionally, a

large number of municipalities have placed the price of water at a level too low to cover

the cost of service, thereby requiring subsidies from other city funds (Goldstein 1986). 

In contrast, there are municipalities that set water rates at levels which generate excess

revenues which are diverted to meet other city expenses (Goldstein 1986).  In talking

with a current city financial officer, it is revealed that there are cities that have

completely separate accounts for each of the departments (i.e., water, waste, energy) and

therefore, the pricing of water is independent of other departments’ financing decisions

(Kersten 2007).  Talks with a Valley city financial manager revealed that cities attempt

to account for all water-related costs (i.e., initial construction, continued costs, water

rights purchase) when pricing water for consumers (Carvajal 2007).  
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 Refer to the Summary of Economic and Financial Methodology section which also references Jones8

(1982); Levy and Sarnat (1982); Quirin (1967); Robison and Barry (1996); and Smith (1987).

ECONOMIC AND FINANCIAL METHODOLOGY

Since different conventional water treatment facilities vary in so many aspects, including

facility design, construction costs, and operating costs, an evaluation methodology is

called for that allows for “apples to apples” comparisons.  An appropriate way to allow

for such comparisons and to determine the most cost-effective alternative is to identify

and define each facility as a capital investment and then apply appropriate financial,

accounting, and economic principles and techniques (Rister et al. 2002; Sturdivant et al.

2008).

  

The methodology used in this thesis combines standard Capital Budgeting - Net Present

Value (NPV) analysis with the calculation of annuity equivalent measures, similar to the

methods presented in Rister et al. (2002).   Standard NPV analysis allows for comparing8

uneven flows (of dollars and product water) among alternatives (i.e., projects), while the

use of annuity equivalents extends the standard NPV analysis to accommodate

comparisons of projects (and components thereof) with different useful lives.  This

combined approach is the methodology of choice because it integrates expected years of

useful life with related annual costs and outputs, as well as other financial realities such

as inflation and the time value of money, into a single, comprehensive annual $/acre-
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 Comparisons across facilities and across technologies are facilitated with certain, limited modifications9

to key data-input parameters.  This topic is discussed in further detail in the “Modified Data Input and

Results” section beginning on page 73.

 A zero net salvage value is recorded for the capital investment due to the assumption that any10

remaining value of the investment is offset by the cost of facility decommissioning and site restoration.  In

addition, the investment is intended to be long-term, with no expectations of salvaging the asset.  The

value of the water rights are retained and could potentially be used (i.e., have value) beyond the life of the

facility; however, assuming this investment is intended to be long term, with no expectations of the

municipality ever salvaging this asset, the resale value of the rights is not included in the baseline analysis. 

foot/yr {or $/1,000 gallons/yr} life-cycle cost value.  It is this life-cycle cost value which

facilitates comparisons among alternatives and allows for priority rankings.9

NPV of Economic and Financial Costs

 

There are three primary cost types which are the foundation for the calculations in this

financial analysis of the McAllen Northwest facility:

1)   Initial Construction/Investment Costs;

2)   Operation and Maintenance Costs (O&M); and

3)   Capital Replacement (CR) Costs.

Also of importance is the salvage value of the capital investment at the end of the

facility’s expected useful life.  Although this analysis assumes a zero net salvage value

for land, buildings, equipment, etc., there could be a salvage, or resale value of the water

rights at the conclusion of the useful life of the facility.  10
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 Calculating the NPV for each segment first and then summing across all segments for the entire plant11

allows for appropriate considerations/adjustments of different projected lives for individual segments. 

Calculation of the net present value of the economic and financial costs of constructing,

operating, and maintaining a conventional surface-water treatment facility over the

course of its useful life can be achieved using the following equation:

where the elements are defined in Table 5.

The NPV calculations sum the costs for facility segment A, of the conventional water

treatment plant P, over planning period Z, and discount the values to present-day

terms.   The NPV calculations for each of the individual segments can then be11

aggregated over the G segments to achieve a comprehensive NPV of the economic and

financial costs for the entire plant P, as seen below:

,

where the elements are defined in Table 5.
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Table 5.  Definitions for the Elements of Economic and Financial Costs
Calculations

Element Definition

net present value of net economic and financial costs for facility segment A of

conventional water treatment plant P over the planning period Z

A individual facility segment (functional area) of conventional treatment plant P

Z time (in years) of planning period, consisting of construction period and expected

useful life

j the specific year in the construction period

net present value of net economic and financial costs for conventional water

treatment plant P over the planning period Z

length of construction period (years) for facility segment A of conventional water

treatment plant P

initial construction cost (which includes the purchase of water rights) for facility

segment A occurring during year j of the construction period for conventional water

treatment plant P in the planning period Z

i compounding inflation rate applicable to construction, operation, and maintenance

inputs

r the discount rate (%) used to transform nominal cash flows into a current (i.e.,

benchmark) dollar standard

length of expected useful life (years following completion of construction period) for

facility segment A of conventional water treatment plant P

operation and maintenance costs for facility segment A during year t of useful life

N  for conventional water treatment plant P over the single economic-planningP,A

period Z

capital replacement costs for facility segment A during year t of useful life N  forP,A

conventional water treatment plant P over the planning period Z

t the specific year of the expected useful life

G number of individual facility segments

salvage value for facility segment A of conventional water treatment plant P

(including water rights) at the end of year Z 

net present value of annual water production for facility segment A of conventional

water treatment plant P over the planning period Z

annual water production (in ac-ft) for facility segment A in year t of conventional

water treatment plant P over the planning period Z

s social time value discount rate (%)
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Table 5.  Continued

Element Definition

annuity equivalent of economic and financial costs for facility segment A for a series

of conventional water treatment plants P, each constructed and operating over a Z

planning period, into perpetuity 

aggregate annuity equivalent of economic and financial costs for conventional water

treatment plant P over a Z planning period into perpetuity

annuity equivalent of water production for facility segment A for a series of

conventional water treatment plants P, each constructed and operating over a Z time

period, into perpetuity

annuity equivalent of costs per ac-ft for facility segment A for a series of

conventional water treatment plants P, each constructed and operating over a Z time

period, into perpetuity

aggregate annuity equivalent of costs per ac-ft for a series of conventional water

treatment plants P

Source: Rister et al. (2002) and own modifications.
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 The debates related to appropriateness of discounting a physical product are addressed later in this12

section starting on page 26.

NPV of Water Production

Similar to the steps performed previously, the sum of the water production for facility

segment A, at water treatment plant P, over planning period Z, is discounted to present

value terms using the following equation:12

where the elements are defined in Table 5.

Annuity Equivalent Values for Economic and Financial Costs

The NPV calculations identify the costs over the planning period of the plant and the

associated potable water production in present-day terms.  The next step, (i.e.,

calculation of annuity equivalents), extends the methodology to allow for comparisons

across alternative water treatment plants of different economic lives.  An annuity

equivalent (or ‘annualized life-cycle cost’) converts the NPV of costs for one plant, over

its useful life, into a per-unit amount which assumes an infinite series of purchasing and

operating similar plants into perpetuity.  Reference Barry, Hopkin, and Baker (1983, p.

187) and Penson and Lins (1980, p. 97) for clarification of this concept and examples. 
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This calculation can be used as the basis of comparison to similarly calculated costs for

segments of other conventional water treatment plants and/or other water treatment

technologies with varying useful lives:

where the elements are defined in Table 5.

The annuity equivalent calculations for each of the facility segments have a common

denominator, which allows for a summation of the different annuity equivalents for each

segment into one aggregated annuity equivalent of economic and financial costs for the

entire plant P, as demonstrated below:

,

where the elements are defined in Table 5.

Annuity Equivalent Values for Water Production

Similarly, the NPV of water production over the planning period Z needs to be

transformed into a comparable annuity equivalent value.  To convert the NPV of potable

water production over the useful life of a plant into an infinite stream of production, the
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 Once the annuity equivalent calculations are complete, comparisons can easily be made; however,13

certain additional adjustments are necessary to level the playing field across different facilities to account

for natural variations in key data-input parameters (Sturdivant et al. 2008).  These variations include: base

year period of analysis, level of annual production, quality of water, etc. (see the section entitled

“Modified Data Input and Results” starting on page 73 for extended analysis of adjustments).

annuity equivalent is calculated as follows:

where the elements are defined in Table 5.

Annuity Equivalent of Costs per acre-foot of Water Production

This step in the methodology divides the “cost” annuity equivalent by the “water

production” annuity equivalent.  The result is a single, comprehensive annual $/ac-ft/yr

{or $/1,000 gallons/yr} life-cycle cost.  The purpose of this calculation is to provide a

consistent, per-unit cost that provides a defined unit of water regardless of size, age, and

type of plant, allowing comparisons among plants of varying projected lives and perhaps

types.   This value for an individual segment is calculated as follows: 13

where the elements are defined in Table 5.
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represents the cost per year for facility segment A in base-year dollars

of producing one ac-ft {or 1,000 gallons} of water into perpetuity through a continual

replacement of plant P.  

To get the total per-unit cost annuity equivalent for the entire plant, the per-unit cost

annuity equivalents for each of the individual plant segments must be aggregated.  This

measure represents the key critical value attained in this thesis and is accomplished

through the following calculation:

,

where the elements are defined in Table 5.

McAllen Northwest Conventional Water Treatment Facility Study:

Values for Discount Rates and Compound Factor

Although much primary data are used in this thesis, two discount rates and a compound

rate are assumed, based on prior work by Rister et al. (2002).

Discount Rate for Dollars

As described above, a NPV calculation must be used in order to “normalize” the cash

flows over the life of the plant.  A discount factor is required when calculating the NPV
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 Mathematically calculated as follows: 14

 The calculation of inflation rates are based on Rister et al. (2002).  The author of this thesis does15

realize that inflation rates will change over time.  Holding all other factors constant, as inflation rates

increase, total costs increase, and as inflation rates decrease, total costs decrease.

of costs.  As outlined in Rister et al. (2002), the discount rate has three components: a

time preference component, a risk premium, and an inflation premium.  The relationship

between these three components is multiplicative and can be seen in the following

equation:

r = [(1+s)*(1+h)*(1+i)]-1.00, 

where the elements are defined in Table 6.

Using the multiplicative-form nature of the composite interest rate logic discussed in

Rister et al. (2002), a 6.125% discount rate (r) is assumed, as well as a social preference

rate of 4.000% (s), and a 0.000% risk premium (h) for federal/state/municipal projects.

Compounding Costs

When considering continued operational costs for future years, it is necessary to include

inflation.  This enables an estimate of nominal dollars for years beyond the benchmark

year.  This component represents the i parameter in the equation above.  Using the

assumed values for r, s, and h, the compounding factor (i) is determined to be

2.043269% annually.  14, 15
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Table 6.  Values for Discount Rates and Compound Factor

Rate Definition Assumed Value

r comprehensive discount rate 6.125%

s social time value 4.000%

h risk premium 0.000%

i rate representing inflation 2.043%

Source: Rister et al. (2002).
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Discount Rate for Water

Also included in this analysis is a discount rate for the annual water output.  This reflects

the argument that (most) people place a lower value on future items or events in relation

to the value associated with the current availability of items or events.  This is a

contentious issue as some economists believe the actual physical amount of future

resources cannot be discounted, but rather only the dollar value of those resources

(Michelsen 2007).  Some claim that a high discount rate on resources will lead to a

disproportionate amount of resources being allocated to earlier periods (Committee on

Valuing Ground Water 1997).  This disproportionate allotment brings up the concept of

intergenerational fairness, which argues for neutrality between the welfare of current and

future generations (Portney and Weyant 1999).  This viewpoint suggests it would be

unfair to place a discount rate on water because the present generation might receive a

greater allocation of water than future generations. 

Conversely, other economists believe when values are not readily available, or are not

easily ascertained, it is appropriate to discount the future physical amount

(Griffin 2007).  As Carlson, Zilberman, and Miranowski (1993) point out, such

discounting includes the use of resources, stating specifically, people “discount the value

associated with future resource use.”  Portney and Weyant (1999) also state, “it is

appropriate-indeed essential-to discount future benefits and costs at some positive rate.”  

The latter stance (i.e., discounting) is the approach the author of this thesis has chosen to

take.
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To account for the social preference of present-day resource use, a 4.000% discount

factor is utilized to convert future water flows into present-day terms.  This discount

factor is achieved by assuming a social preference rate of 4.000% (s), combined with a

0.000% risk premium (h) mentioned above, as well as a 0.000% inflation rate assumed

for water (i).  For further discussion of this topic, refer to Rister et al. (2002), which

includes references to Griffin (2002), and Griffin and Chowdhury (1993).
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OVERVIEW OF THE MCALLEN NORTHWEST CONVENTIONAL SURFACE-

WATER TREATMENT FACILITY

The conventional surface-water treatment facility analyzed in this thesis is referred to as

the McAllen Northwest facility, located just outside of McAllen, Texas near the Texas-

Mexico Border (Figure 2).  The city of McAllen is facing the challenges of rapid

population growth and the need to expand its current potable water supply.  With the

fastest-growing metropolitan area in the state of Texas, according to the 2005 U.S.

Census (McAllen Chamber of Commerce 2006), the McAllen Public Utilities Board

(PUB) is continuously searching for a solution to the problem of meeting increasing

water demand (Santiago 2007).  

Among the different alternatives currently being considered by McAllen for expanding

their potable water supply are: the desalination of brackish groundwater, wastewater

reuse, the expansion/fine-tuning of existing conventional surface-water treatment

facilities, and the building of a new conventional surface-water treatment facility

(Santiago 2007).  Prior to the construction of the McAllen Northwest facility, the only

source of potable water for the McAllen municipal service area was the McAllen

Southwest facility, which was built in the late 1950s.  In 2002, faced with the need to

expand the water system’s capacity, the McAllen Public Utility Water Systems began

construction on the McAllen Northwest facility (Figure 3).  Completed in 2004, the

facility currently has a maximum-designed capacity of 8.25 mgd, although some of the 
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Source: BusinessMap 3.0 (2003).

Figure 2.  Location of McAllen, Texas 

Source: MapQuest (2007).
Figure 3.  Location of McAllen Northwest facility 
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facility’s components are oversized to allow the operation to eventually expand to 32

mgd (Santiago 2007).  With the completion of the McAllen Northwest facility’s 8.25

mgd phase, the McAllen water system now has a capacity of 49 mgd and services

approximately 50,000 homes in McAllen and the surrounding areas.    

The source water for the Northwest facility is surface water originating from the Rio

Grande.  The water reaches the McAllen facility through a system of open-surface

canals operated by various irrigation districts.  This process of obtaining water from the

irrigation districts (IDs) stems from a Texas constitutional amendment, Art. 3, Sect. 52,

passed in 1904, which established that IDs provide water services including wholesale

and untreated water supply (Stubbs et al. 2003).  The specific irrigation districts that

deliver water to the McAllen Public Utilities include: Hildalgo County Irrigation District

No. 2 (commonly known as San Juan #2), Hildalgo County Water Improvement District

No. 3, and the United Irrigation District of Hidalgo County (commonly known as

United).  The United Irrigation District is the specific ID which services the McAllen

Northwest facility.  Once diverted from the Rio Grande, the water travels approximately

ten miles through the United Irrigation District’s main canal before it reaches the

reservoir at the Northwest facility (Santiago 2007).
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Description of Conventional Surface-Water Treatment Process

The McAllen Northwest facility utilizes a conventional surface-water treatment process. 

The objective of water treatment is to produce potable water from the untreated source

or “raw” water.  Raw water is treated to remove any disease-causing organisms, as well

as silt, grit, and humus material.  In addition, water treatment improves the taste, color,

and odor of the raw water (Utah Division of Water Resources 2007).  Figure 4 provides

a schematic of this process and demonstrates the multiple stages that are required to

convert raw, source water to potable drinking water through the conventional treatment

process.   

For the McAllen Northwest facility, before the water treatment process begins, the water

is held in a reservoir adjacent to the treatment facility that is 30 ft deep, which covers

approximately 30 acres of surface area, and has a capacity of 200 million gallons (Figure

5).  This amount is enough to supply water to the facility for 23 days.  The treatment

process at the McAllen Northwest facility is as follows (Santiago 2007): 

Pre-Disinfection

2In this first step, the chemical compound chlorine dioxide (ClO ), which is formed from

2the combination of sodium chlorite (NaClO ) and chlorine (Cl), is added to the water to

kill germs and improve the treatment process.  Also, a coagulation chemical, aluminum 



Source: Jurenka, Martella, and Rodriguez (2001).
Figure 4.  Schematic of conventional water treatment process 
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Source: Sturdivant (2006).

Figure 5.  McAllen Northwest facility reservoir
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2 4 3sulfate (Al (SO ) ), is added to encourage the aggregation of dissolved substances,

thereby facilitating their subsequent removal (Buffalo Water Authority 2005).

Coagulation

The coagulation stage involves the water being moved to a rapid-mix tank which has

fast-moving, rotating paddles that ensure the coagulation chemical is fully mixed with

the water.  The chemicals stick to the impurities (i.e., small, suspended particles) in the

water and force the particles to bond together and form larger particles referred to as

“floc.” 

Flocculation 

The water then moves to the flocculation stage of treatment, which is composed of a

series of six (6) consecutive chambers, each measuring approximately 14 ft long by 10 ft

wide by 15 ft deep.  These chambers have large, slow-moving paddles that are designed

to further promote the formation of floc (or clusters of impurities).  As the water moves

from one chamber to the next, the speed of the paddles slow.

Sedimentation

From the flocculation chambers, the water flows to the two sedimentation basins (Figure

6).  In the sedimentation basin, the floc that was formed in the previous two steps slowly

settles to the bottom of the tank.  Floc particles are removed continuously from the

bottom of the tank by a rake system.  The aggregated floc is then pumped to the sludge
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 Garnet is a “high hardness, high density filter material used in multi-media filters.  Recommended as a16

support bed for other materials such as filter sand, anthracite, corosex, etc.” (Aqua Science 2007).

 The GAC process is not currently used because taste is not regulated and management’s cost/benefit17

assessment favors forgoing the high operational and maintenance costs associated with GAC.

lagoons.  Another chamber, located at the end of the sedimentation tanks, can be utilized

as an alternate location for the injection of the primary disinfectant, chlorine dioxide

2(ClO ).

Filtration/Backwash

The next step in the process is conventional filtration (Figure 7).  The water flows

through filters composed of anthracite (coal), sand, and garnet, thereby removing any

remaining suspended particles.   The filters at the McAllen Northwest facility are16

capable of using granular activated carbon (GAC) to improve the quality and taste of the

water; however, this method is currently not in use.   Every 100 hours, a backwash of17

the filters is performed.  In this process, potable water is flushed backwards through the

filter bed to clear trapped debris and floc from the filter media.  The backwash water is

then pumped to the sludge lagoons. 

Sludge Disposal

The sludge from the sedimentation and filtration processes is pumped to three concrete-

lined lagoons, each measuring 400 ft long by 80 ft wide by 10 ft deep where sludge is

separated from the water naturally through gravity.  The remaining water is then recycled 
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Source: Sturdivant (2006).

Figure 6.  Sedimentation basins at McAllen
Northwest facility 

Source: Sturdivant (2006).

Figure 7.  Filters at McAllen Northwest facility
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 TCEQ requires a residual disinfectant in all distribution systems to prevent the formation of bacteria18

(Santiago 2007).

through the water treatment process again.  The leftover sludge is dried and removed by

a third party and transferred to agricultural land. 

Secondary Disinfection

2In this final stage of water treatment, chloramines (NH Cl) are added to the water at a

transfer station.  The transfer station is the pump station located directly after the

filtration which transfers the treated water to the storage tank.  Chloramine is a chemical

compound formed from the combining of Chlorine (Cl) and Liquid Ammonium Sulfate

4 2 4((NH ) SO ).  The Chloramine is used as a disinfectant to prevent the formation of

bacteria and to improve the quality and taste of water.  Chloramine is also the residual

disinfectant required by the Texas Commission on Environmental Quality (TCEQ).   18  

Storage

The cleaned and purified water is sent to two aboveground storage tanks that have a total

combined capacity of four million gallons (which is one-half of one day’s production)

before entering the distribution system.  For the purposes of this thesis, the distinction is

made that this is the final stage of the treatment process and the subsequent distribution

system is not considered in the cost calculations. 
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Water Quality

An examination of the water quality prior to, and post treatment at the McAllen

Northwest facility is provided in Table 7.  As shown in the table, the treated water, for

the period January to December 2006, meets all of the standards and guidelines set by

the Environmental Protection Agency (EPA) and TCEQ.  The Maximum Contaminant

Level Goals (MCLG), set by the EPA, represent the level of a contaminant in drinking

water below which there are no known health risks.  Also set by the EPA are the

Maximum Contaminant Levels (MCL), which represent the highest concentration of a

contaminant allowed in drinking water, and are set as close to the MCLGs as feasible,

using the best available treatment technology (Environmental Protection Agency 2008). 

Examples of the contaminants that are restricted by the MCLs because of potential health

danger include arsenic, fluoride, and nitrate.  

Secondary levels are set by both EPA and TCEQ and represent the reasonable goals for

drinking water quality.  These levels deal with contaminants that are not a risk to human

health, but rather concern the aesthetic qualities of drinking water (i.e., taste, color, and

odor) (College Station Utilities 2006).  EPA and TCEQ do not enforce the secondary

levels, but rather use them as guidelines.  Examples of these unregulated substances

include aluminum, calcium, pH, hardness, and sodium.  Another item listed in Table 7 is

the residual level of chloramine in water leaving the facility.  As mentioned previously, 
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Table 7.  Quality of Outgoing Treated Product Water (for January to December
2006) and Incoming Raw Water (for June 2007) of McAllen Northwest
Conventional Surface-Water Treatment Facility

Substance Unitsa

Incoming

Level

Outgoing Levels
Maximum

Contaminant

Level (MCL)b

Min. Max. Avg.

Regulated Contaminants

-Arsenic ppb 3 3 3 10   

-Barium ppm .097 .109 .103 2   

-Fluoride ppm .42 .43 .43 4   

-Gross Beta Emitters pCi/L 4.5 5.8 5.15 50   

-Nitrate ppm .12 .24 .18 10   

-Selenium ppb 0 3.1 1.6 50   

-Total Organic Carbon ppm 5.49 3.18 4.37 3.71 25% Removalc

Unregulated Substances Secondary Limitd

-Aluminum ppm .094 .124 .109 50   

-Bicarbonate ppm 91 100 96 NA   

-Calcium ppm 74.7 79 76.9 NA   

-Chloride ppm 147 148 148 300   

-Magnesium ppm 21.1 24 22.6 NA   

-pH Units 8.25 7.7 7.9 7.8 7   

-Sodium ppm 109 121 115 NA   

-Total Alkalinity-CaCO3 ppm 132 91 100 96 NA   

-Total Dissolved Solids ppm 690 739 715 1,000   

-Total Hardness-CaCO3 ppm 280 273 273 273 NA   

Residual Maximum

-Chloramine ppm 1.2 3.9 3.5 4   

Source: McAllen Public Utilities Water Systems (2006) and City of McAllen Water Laboratory (2007)

and own modifications.

‘ppb’ is an abbreviation for ‘parts per billion.’  ‘ppm’ is an abbreviation for ‘parts per million.’  ‘pCi/L’a

is an abbreviation for ‘pico curies per liter’ which is a measurement of radioactivity in the water (NSF

International 2008).  

MCL represents the highest level of the contaminant allowed in drinking water (Environmentalb

Protection Agency 2008).

Percentage removal depends on raw water total organic carbon and alkalinity levels (Environmentalc

Protection Agency 2008).

Secondary limit represents a level of the contaminant that is acceptable/preferred for drinking waterd

quality; these levels deal with contaminants that mostly affect the aesthetic qualities of drinking water

(College Station Utilities 2006).
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the McAllen Northwest facility utilizes chloramines as their disinfectant residual.  The

limit for this residual in treated water is four (4) parts per million (ppm). 

Construction and Performance

The construction period for the McAllen Northwest facility spanned 24 months, from

January of 2002 to January of 2004, during which time there were no notable delays or

problems (Santiago 2007).  A two-year construction period is assumed for this analysis

and represents Y  in the methodology equations discussed beginning on page 15.  TheP,A

different capital components of the facility have varying expected lives, ranging from

two years for the anthracite component of the filters, to at least 50 years for structural

items such as buildings, concrete, etc.  This analysis assumes the maximum useful life of

the facility (following construction) to be 50 years.  During this life span, however, there

are selected capital items that must be replaced intermittently (i.e., pumps, turbidity

meters, etc.).  These capital replacement expenses are incorporated into the analysis, as

well as other non-capital expenses which are captured in annual operating expenses.

The original maximum-designed capacity of the McAllen Northwest facility is 8.25 mgd. 

This capacity equates to an output of 9,241 ac-ft annually if the facility is operating at

100%, 365 days per year.  Operating at 100% of the maximum-designed capacity for 365

days per year is not realistic for any water treatment facility, however.  As with other

facilities, the McAllen Northwest facility encounters equipment maintenance and failure
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 The fiscal year for the McAllen PUB is October-September.19

 Throughout this thesis when the production efficiency is referred to, it is important to note that this20

value is an annual average of daily water production.

issues which require a certain amount of shut-down time in the course of a year, typically

two to three weeks.  There is another limiting factor in the operating capabilities of this

facility: the pumps can only handle a maximum of eight (8) mgd (Santiago 2007). 

Therefore, due to required shut-down maintenance time, and the limiting factor of the

pumps’ capacities, the McAllen Northwest facility is operating at less than the designed

8.25 mgd.  A review of real flow data for fiscal year (FY) 2005-2006 (Santiago 2007)

indicates the facility is producing roughly 2,349 million gallons for the year (or 7,208 ac-

ft), averaging 6.435 mgd.   This level of production equates to 78% of the maximum-19

designed capacity and is used as the benchmark level of production in this case-study

analysis.   20

Costs

When McAllen PUB decided to build an additional conventional water treatment facility,

two major expenses were incurred: (1) acquiring the water rights, and (2) constructing

the facility.  Since the commencement of operations in 2004, additional expense

categories have occurred: (1) continued annual operation & maintenance expenses, and

(2) intermittent capital replacement expenses.
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 Refer to Sturdivant et al. (2008) for an in-depth analysis of desalination technology and its application21

in the Lower Rio Grande Valley.

Purchase of Water Rights

A municipality considering increasing their level of water production using conventional

municipal water treatment faces two options to enhance their available source water

supply: drill a groundwater well or obtain additional surface water.  In the Texas Lower

Rio Grande Valley, this situation is more complicated.  Since the majority of the

Valley’s groundwater is brackish, desalination treatment is required to use the

groundwater for drinking-water purposes, which is a distinctly different treatment

process.   Therefore, in order to obtain additional raw water for subsequent treatment in21

conventional treatment facilities, municipalities can purchase or lease Rio Grande

municipal water rights from another municipality, a private individual, or from an

irrigation district (Stubbs et al. 2003). 

The McAllen Northwest facility utilizes raw water obtained by McAllen PUB through a

purchase of permanent municipal water rights in the 1990s and early 2000s.  In this

analysis, the current purchase price of permanent water rights is included and valued at a

level equal to the opportunity cost of purchasing water rights in the Valley today.  The

reasoning for recording the cost in today’s price, rather than the price at which the rights

were purchased (i.e., at lower levels), is consistent with the economic concept of
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 The concept of opportunity cost, in its most basic definition, is the value of the next best alternative of22

a resource (Perloff 2004).  A more precise definition provided in Thomas and Maurice (2005) states,

“opportunity cost of using an owner-supplied resource is the best return the owners of the firm could have

received had they taken their own resource to market instead of using it themselves.”  In this thesis, the

current price of the water rights is included, for it represents the financial capital McAllen would receive if

they sold the rights on the market today.

opportunity cost.   That is, this analysis is premised on a current (i.e., 2006) basis, and22

thus needs to reflect current costs.  

Through communications with local irrigation district managers, the current (2006) price

of a permanent municipal water right was estimated to be approximately $2,300/ac-ft for

this region (Kaniger 2007; Barrera 2007).  This analysis assumes a purchase of 8,872 ac-

ft of water rights, which is 96% of the annual maximum designed capacity of the facility. 

This 96% level of required water rights was determined by assuming a municipality

would purchase enough water rights for maximum annual capacity of a facility less a

two-week shut-down time that is considered typical.  Consequently, the total assumed

cost of water rights purchased equals $20.4 million, which is calculated by multiplying

the 2006 cost of a water right ($2,300/ac-ft) by the annual water production at 96%

efficiency (8,872 ac-ft).

Initial Construction Costs

“Initial Construction Costs” for the McAllen Northwest facility totaled $21.30 million, in

2002 dollars (McAllen Public Utilities Water Systems 2002).  For this analysis, 2006

was chosen as the benchmark year in order to make the analysis more current and

consistent with other, similar, planned and work-in-progress research analyses. 
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Therefore, the construction costs were compounded four years (using the 2.043 annual

compounding rate) to account for inflation, resulting in an adjusted 2006 construction

cost of $22.96 million.  To facilitate an analysis-detail and conventional treatment

facility-comparison, the total cost is divided into 16 cost-item categories and dissected

into ten individual segments common to conventional surface-water treatment facilities

(Table 8).  As depicted in Table 8 and Figure 8, the most cost-intensive areas for initial

construction of the McAllen Northwest facility are the Overbuilds & Upgrades

($5,971,571), followed by the Raw Water Intake/Reservoir ($4,737,742), and the

Delivery to Municipal Line/Storage ($4,683,612).  When viewed from an individual cost

item perspective, the Storage Tanks ($5,638,204) and Building & Site Construction

($4,889,076) items are the largest contributors to total initial construction costs.

Continued Costs

“Continued Costs” represent the annual costs incurred during ongoing operations from

the time of construction completion until the end of the facility’s useful life.  The annual

continued costs recorded are based on the actual FY 2005-2006 budget prepared by

McAllen Public Utility Water Systems (McAllen Public Water Utilities 2007) and are

compounded at 2.043% annually.  The referenced budget reports the expenses incurred

for the entire McAllen water system, which also includes the larger, older McAllen

Southwest facility.  To isolate the continued costs for the Northwest Facility, which is

the facility of interest in this report, the overall budget for continued expenses was

multiplied by a ratio of 8/25.  This rate represents McAllen PUB’s management 



Table 8.  Initial Construction Costs for the McAllen Northwest Conventional Surface-Water Treatment Facility, Across Individual

Functional Areas in 2006 Dollars

INITIAL

CONSTRUCTION

COST ITEM

Individual Functional Areas (i.e., Cost Centers) of the M cAllen North Facility

Raw Water

Intake/

Reservoir

Pre-

Disinfection

Coagulation/

Flocculation Sedimentation

Filtration & 

Backwash

Secondary

Disinfection

Sludge

Disposal

Delivery to

M unicipal Line/

Storage

Operations’

Supporting

Facilities

Overbuilds

&

Upgradesa

Initial Total

Costs

Administrative

Overheadb

Building & Site

Construction $716,293 $144,503 $507,635 $240,894 $893,682 $96,414 $316,902 $105,420 $694,926 $1,172,407 $4,889,076 

Concrete Structures 3,713 101 301 182 33,302 88 156 976 191 1,244 40,254

Engineeringb

Equipment & Installation 2,990 235,913 619,422 453,767 927,663 235,913 27,848 2,990 172,024 2,678,530

Excavation & Site Work 2,041,917 13,444 47,069 21,081 91,296 10,341 227,760 69,671 12,465 108,389 2,643,433

Laborb

Land 1,025,354 12,563 37,677 22,801 69,737 11,017 19,471 121,969 23,901 155,510 1,500,000

M etals 59,581 5,971 17,908 10,837 33,145 5,236 9,254 57,972 11,360 73,914 285,178

M iscellaneous 634 64 191 115 352 55 99 617 121 787 3,035

M obilization/Insurance 138,299 13,860 41,568 25,156 76,938 12,155 21,482 134,564 26,368 171,568 661,958

Painting 39,305 3,939 11,814 7,150 65,237 3,454 6,106 38,243 58,374 48,761 282,383

Piping 256,450 6,634 26,993 11,154 234,401 8,543 48,224 23,703 3,667 1,553,04 2,172,817

Pre-Projectb

SCADA 453,206 45,420 136,218 82,437 252,126 39,831 70,397 440,969 86,411 562,233 2,169,248

Storage Tanks 3,686,518 1,951,68 5,638,204

TOTAL $4,737,742 $482,412 $1,446,796 $875,574 $2,677,879 $423,047 $747,699 $4,683,612 $917,784 $5,971,571 $22,964,116 

 Source: M cAllen Public Utilities W ater Systems (2002) and own modifications.

Represents construction beyond the necessities and captures “elbow room” for future expansion, refer to footnote 26 on page 52 in text.a

Costs for this category were not identifiable in the data available, but rather are included elsewhere in other cost item categories. b



46

Figure 8.  Proportion of construction costs, by segment, for the McAllen Northwest
facility
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 Although the CITY H2O ECONOMICS  model (introduced in full in section starting on page 51) is23 ©

capable of dividing the administrative costs into six cost-item categories, McAllen PUB, which provided

the data for this specific analysis, did not provide a break-down of these costs; therefore, only one cost-

item category for administration is used in this analysis.

 Although the purchase of the permanent water rights is a one-time payment, irrigation districts charge24

annual fees for the delivery of the water from the Rio Grande to the McAllen water system.  These

delivery costs are included in this category.

allocation of fixed costs to the McAllen Northwest facility (Santiago 2007).  For the

McAllen Northwest facility, the continued costs totaled $1.77 million per year (in 2006

dollars) (McAllen Public Utilities Water Systems 2007), and are divided into two

categories (Table 9): (1) administrative and (2) operations and maintenance (O&M).

Totaling $84,138, annual administrative expenses account for facility-related expenses

which are not included on the McAllen Water Systems budget, but rather are included

on other owner-entity budgets (e.g., McAllen PUB’s budget).  For analysis-detail and

water treatment-facility-comparison reasons, this category is divided into six cost-item 

categories, as well as broken into ten individual segments common to conventional

water treatment facilities (Table 9).23

Totaling $1.68 million, annual O&M expenses account for facility expenses incurred at

the McAllen Northwest facility.  This category is divided into 12 cost-item categories, as

well as broken into ten individual segments common to conventional water treatment

facilities (Table 9).  As depicted in Table 9, the most costly area to operate and maintain

each year is the Raw Water Intake/Reservoir ($618,664) followed by Pre-Disinfection

($398,911).  When viewed from an individual cost item perspective, the cost of

obtaining Water ($476,916) is the largest contributor to continued O&M costs.  24



Table 9.  Baseline Annual Continued Costs, Across Individual Functional Areas, for the McAllen Northwest Facility in 2006 Dollars

CONTINUED COST ITEM

Individual Functional Areas (i.e., Cost Centers) of the M cAllen North Facility

Raw Water

Intake/

Reservoir

Pre-

Disinfection

Coagulation/

Flocculation Sedimentation

Filtration &

Backwash

Secondary

Disinfection

Sludge

Disposal

Delivery to

M unicipal

Line/Storage

Operations’

Supporting

Facilities

Overbuilds

&

Upgradesa

Annual Total

Costs

Adm inistrative Item

-Administrative verhead $9,231 $25,936 $4,629 $2,310 $2,336 $9,930 $6,916 $13,828 $7,179 $1,843 $84,138

-Insuranceb

-Laborb

-M aintenanceb

-Otherb

-Vehicles/Rolling Stockb

Sub-Total 9,231 25,936 4,629 2,310 2,336 9,930 6,916 13,828 7,179 1,843 84,138

Operations & M aintenance

Item

-Adm inistrative Overhead

-Capital Outlay 121 169 48 265 193 24 24 1,568 2,412 

-Chemicals 209,881 81,621 291,502

-Electrical Power 75,934 3,797 37,967 18,984 18,984 3,797 53,154 113,902 37,967 15,187 379,673

-Insuranceb

-Labor 40,240 113,055 20,177 10,070 10,184 43,287 30,145 60,277 31,293 8,035 366,763

-M aintenance 8,845 24,849 4,435 2,213 2,239 9,514 6,626 13,249 6,878 1,766 80,614

-Supplies 9,700 9,700

-Rentalb

-Other Services & Charges 7,377 21,393 3,688 2,213 2,213 8,115 10,328 11,065 5,902 1,475 73,769

-Vehicles/Rolling Stock  1,436 1,436

-Water Delivery 476,916 476,916

                Sub-Total 609,433 372,975 66,436 33,528 33,885 146,527 100,277 198,517 94,744 26,463 1,682,785

         TOTAL $618,664 $398,911 $71,065 $35,838 $36,221 $156,457 $107,193 $212,345 $101,923 $28,306 $1,766,923

Source: M cAllen Public Utilities W ater Systems (2007) and own modifications.

Represents construction beyond the necessities and captures “elbow room” for future expansion, refer to footnote 26 on page 52 in text.a 

Costs for this category were not identifiable in the data available, but rather are included elsewhere in another cost item category.b 
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Capital Replacement Items

“Capital Replacement Costs” are an essential part of the continual operations of a

treatment facility.  Within the useful life of a facility, certain capital items must be

replaced during that time period due to wear and tear.  The costs for capital replacement

items are compounded at 2.043% to account for inflation, as discussed previously. 

Table 10 depicts the capital replacement items for the McAllen Northwest facility, as

well as the frequency and cost of the replacement.  The seven capital replacement items

have frequencies varying from two years for the anthracite (i.e., the anthracite coal

component of the filters) to 18 years for the high-speed pumps.  The cost per item for

these capital replacements ranges greatly, varying from $2,500 for a turbidity meter up

to $75,000 for a SCADA upgrade. SCADA is an acronym for ‘Supervisory Control and

Data Acquisition’ “which is the hardware and software technology which collects data

from sensors at remote locations, and in real time sends the data to a centralized

computer where facility management can control equipment/conditions at those

locations” (Sturdivant et al. 2008). 
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Table 10.  Capital Replacement Items, Occurrence, and Costs for the McAllen
Northwest Facility 

Capital Item

Frequency of

Replacement Cost per Itema

No. of Items

Replaced Each

Occurrence

SCADA Upgrades 5 years $75,000 1

Anthracite 2 years 15,000 1

High Speed Pump 18 years 45,000 3

Trucks 7 years 16,000 2

Chemical Feed Pumps 5 years 3,750 4

Lawnmower 5 years 3,500 1

Turbidity Meters 6 years 2,500 6

Source: Santiago (2007).

In 2006 dollars.a
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2 In this initial application of CITY H O ECONOMICS , the 11  and 12  functional expense areas are25 © th th

unused.

2CITY H O ECONOMICS  - AN ECONOMIC AND FINANCIAL MODEL©

To facilitate a Capital Budgeting - NPV analysis using the methodology previously

presented for the McAllen Northwest facility, Texas AgriLife Extension Service and

® ®Texas AgriLife Research agricultural economists developed a Microsoft  Excel

2spreadsheet model, CITY H O ECONOMICS .  This model provides life-cycle costs for©

both the entire surface-water treatment facility as well as detailed cost information for

up to 12 individual functional expense areas (i.e., segments).   Using the cost data25

reported above, the individual expense areas for the McAllen Northwest facility are:

1)   Water Rights/Raw Water Intake/Reservoir;

2)   Pre-Disinfection;

3)   Coagulation/Flocculation;

4)   Sedimentation;

5)   Filtration/Backwash;

6)   Secondary Disinfection;

7)   Sludge Disposal;

8)   Delivery to Municipal Line/Storage;
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 ‘Overbuilds’ represent the excess construction completed to leave room for future expansions of the26

facility.  An example of an overbuild at the McAllen Northwest facility is the piping system, which,

although the facility’s current maximum capacity is 8.25 mgd, is large enough to handle 32 mgd (Santiago

2007).  ‘Upgrades’ represent “over-the-top” construction beyond what is necessary for conventional water

treatment technology.  An example of an upgrade is the main office building, which, although the basic

requirements for an office building are quite minimal for a conventional facility of this size, is a

considerably large building at the McAllen Northwest facility, with two stories and an elevator.

9)   Operations’ Supporting Facilities; and

10) Overbuilds and Upgrades.26

Zero net salvage values (for buildings, equipment, land, etc.) are assumed for all capital

assets in the calculations as well as a continual replacement of such capital items into

perpetuity.  In the model, there is an option to include a resale value for the selling of the

water rights at the conclusion of the life of the facility (50 years plus construction

period); however, for this baseline analysis, this resale value is set at zero. 

2The model CITY H O ECONOMICS  facilitates comparisons both within and across©

different treatment technologies.  Beyond having the ability to compare the “bottom

line” cost results for a water treatment facility, this model can be applied to analyze

individual expense areas.  That is, results provided by the model allow for a breakdown

of costs into facility segment, cost type, and item.  Such details are useful when

comparing two facilities with substantially different life-cycle costs.  The ability to

recognize individual segment costs, beyond the standard aggregate, bottom line, overall

analysis facilitates identification of which functional cost area(s) is (are) causing the

disparity.   
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 The baseline results for this analysis are characterized by a 78% production efficiency (PE) rate, a27

2006 base year, the inclusion of the ‘overbuilds and upgrades’ segment, and the exclusion of the resale of

water rights.  That is, in effect, these results reflect a case study of the McAllen Northwest facility

operating in its current mode.  Note that the section entitled “Modified Data Input and Results” contains

results that remove the ‘overbuilds and upgrades’, as well as an 85% PE rate, with the intention of

achieving a more accurate comparison between water treatment technologies.

RESULTS

These economic and financial estimates are based on the methodology introduced

2previously, the aforementioned CITY H O ECONOMICS  model, and the primary data©

provided by the McAllen Public Utility Water Systems.  The results are insightful for

both identifying the costs of potable water produced at the McAllen Northwest facility

and for facilitating multi-facility evaluations aimed at determining the most economic

water supply alternative (i.e., for meeting future potable-water demands).  The results

reported herein cover the costs of producing and delivering the water to an initial point

in the distribution system, but not the costs of delivering to individual households. 

Therefore, these cost estimates are not to be considered the appropriate price to charge

consumers.   

  

Aggregate Results 

Presented below are the baseline estimates of the McAllen Northwest facility.   The27

goal is to begin with the generalized overview which will be followed by a presentation

of costs by categories.  
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NPV of Costs and Water Production

The NPV of all costs for the McAllen Northwest facility over the assumed 50-year life

of the facility totals $79.17 million in real, 2006 dollars.  The NPV of water production

for the McAllen Northwest facility over the 50-year life equates to a real value of

143,164 ac-ft (Table 11).

Annuity Equivalent of Costs and Water Production

Extending the NPV of the costs for the McAllen Northwest facility into perpetuity, using

the annuity equivalent calculations, results in an estimated $5.08 million/year annuity

equivalent.  The same calculations are conducted on the NPV of water production,

resulting in an annuity equivalent for water production of 6,583 ac-ft/year (Table 11). 

Annuity Equivalent of Costs per Acre-foot of Water Production

Dividing the annuity equivalent for costs by the annuity equivalent for water production

provides an estimate of the annualized life-cycle cost, or the annuity equivalent of costs 
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Table 11.  Aggregate Results for Costs of Production at the McAllen Northwest
Facility in 2006 Dollarsa, b

Results Units Nominal Value Real Valuec

Initial Construction & Water Rights

Investment 

2006 dollars  $43,368,658  $43,368,658

NPV of Total Cost Stream 2006 dollars $207,706,012 $79,167,566

- annuity equivalent $/yr $5,079,864

Water Production ac-ft (lifetime) 360,406 143,164

- annuity equivalent ac-ft/yr 6,583

Water Production 1,000-gal (lifetime) 117,438,750 46,650,165

- annuity equivalent 1,000-gal/yr 2,145,074

Cost-of-Treating Water $/ac-ft/yr  $771.67

Cost-of-Treating Water $/1,000-gal/yr  $2.37

The results of this table are considered the baseline or “case study” analysis of the McAllen Northwesta

facility in its current operating state (i.e., 78% production efficiency, 2006 dollars, overbuilds and

upgrades are included, and a zero net salvage value is recorded for all capital items and water rights).

Refer to Tables 12-13 for a more detailed analysis of the baseline results.b

Determined using a 2.043% compound rate on costs, a 6.125% discount factor for dollars, a 4.000%c

discount factor for water, and a 0.000% risk factor (Rister et al. 2002).
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 If the resale of water rights were included (assuming the rights are sold in year 53 and the price of the28

water rights increased with the inflation rate, meaning the initial $2,300/ac-ft price for water rights is

compounded forward 53 years using the 2.043% compounding rate resulting in a price sold of $6,450/ac-

ft), the life-cycle cost of producing water would be $746.79/ac-ft/yr {$2.29/1,000 gallons/yr}.

 Section 49.507 of Senate Bill 3 passed by the Texas Legislature in 2007 states that municipalities are29

now (i.e., after January 1, 2008) only required to pay 68% of the market value for permanent water rights

converted from agricultural to municipal use in the Rio Grande Valley (Texas Legislature Online 2007). 

In this analysis, if the opportunity cost of water rights were valued at 68% of the original price ($2,300/ac-

ft), the adjusted price of water rights would be $1,564/ac-ft.  Such an adjustment would bring the total life-

cycle cost of production down from $771.67 to $708.02/ac-ft/yr {$2.17/1,000 gallons/yr}.

per ac-ft.  For the McAllen Northwest facility, this equates to a per unit life-cycle cost of

$771.67/ac-ft/yr or $2.37/1,000 gallons/yr (Table 11).  ,28 29

Results by Cost Type

In this section, the aggregate results reported in Table 11 are separated into specific cost

types.  As shown in Table 12, the largest cost type for the entire facility is the initial

construction/investment, which contributes 55% of the total costs, totaling $43.37

million over the life of the facility.  Of this 55%, 26% of the costs are attributed to the

purchase of water rights, with the remaining 29% associated with actual construction of

the plant.  The results by cost type are further illustrated in Figure 9, which shows that

continued costs represent less than half of the total costs.  The least significant cost type

is the capital replacement expense, accounting for only 1% of total costs.  When

examined on a per-unit cost basis, again it is clear the initial construction/investment

category represents the greatest proportion of costs, with $422.72/ac-ft/yr {$1.30/1,000

gallons/yr}, followed by the continued cost category, contributing $342.07/ac-ft/yr 
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Table 12.  Costs of Producing Water by Cost Type for the McAllen Northwest
Facility in 2006 Dollarsa

Cost Type

NPV of Cost

Stream

Annuity

Equivalent

in $/yr

Annuity

Equivalent

in $/ac-ft/yr

Annuity

Equivalent

in $/1000-

gal/yr

% of

Total

Cost

Initial Construction/

Investment  $43,368,658 $2,782,792  $422.72  $1.30 55%

      -Water Rights Purchase  20,404,541 1,309,277  198.89  0.61 26%

Continued Costs  35,093,723 2,251,823  342.07  1.05 44%b

Capital Replacement 705,185 45,249 6.88  0.02 1%

      Total $79,167,566 5,079,864 $771.67 $2.37 100%

The results of this table are considered the baseline analysis of the McAllen Northwest facility in itsa

current operating state (i.e., 78% production efficiency, 2006 dollars, overbuilds and upgrades are

included, and a zero net salvage value is recorded for all capital items and water rights).

Refer to Table 14 for more details on “Continued Costs.”b
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Figure 9.  Proportion of total life-cycle costs, by cost type, for the McAllen
Northwest facility
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{$1.05/1,000 gallons/yr}, and lastly the capital replacement expense, representing only

$6.88/ac-ft/yr {$.02/1,000 gallons/yr}. 

Results by Segment

The following section takes the aggregate results for the initial construction/investment,

continued, and capital replacement costs, and separates these cost items into ten

individual expense areas.  This ability to dissect the total life-cycle costs of the facility

2into the individual facility segments is a distinct feature of CITY H O ECONOMICS .©

The values for the NPV, the annuity equivalent, the cost of production per unit (i.e.,

annuity equivalent values), and the percentage of the total costs for each of the

individual segments are shown in Table 13.  The largest cost segment is the Raw Water

Intake/Water Rights/Reservoir component, which has a NPV value of $37.43 million

and accounts for 47% of the total costs.  The least costly segment is Sedimentation,

which has a NPV value of $1.59 million and accounts for 2% of total costs.  Figure 10

further illustrates the cost breakdown by segment, clearly indicating that the Raw Water

Intake/Water Rights/Reservoir segment contributes the greatest amount to total costs.

Results by Operations and Maintenance Cost Item

2Another feature of the spreadsheet model CITY H O ECONOMICS  is separation of the©

operations and maintenance costs into detailed, itemized specifics.  Table 14 is a 
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Table 13.  Costs of Producing Water for the Ten Facility Segments of the
McAllen Northwest Facility in 2006 Dollarsa

Facility Segment

NPV of Cost

Stream

Annuity

Equivalent

in $/yr

Annuity

Equivalent

in $/ac-

ft/yr

Annuity

Equivalent

in $/1,000-

gals/yr

% of

Total

Costs

1) Water Rights/Raw Water 

Intake/Reservoir $37,429,870 $2,401,724 $364.84 $1.12 47%

2) Pre-Disinfection 8,460,382 542,869  82.47  0.25 11%

3) Coagulation/Flocculation 2,858,269 183,404  27.86  0.09 4%

4) Sedimentation 1,587,368 101,855  15.47 0.04 2%

5) Filtration/Backwash 3,587,649 230,205  34.97  0.11 5%

6) Secondary Disinfection 3,530,502 226,538 34.41  0.10 4%

7) Sludge Disposal 2,876,691 184,586  28.04 0.09 4%

8) Delivery to Municipal 

Line/Storage 8,993,125 577,053  87.66 0.27 11%

9) Operations' Supporting 

Facilities 3,309,921 212,384 32.26 0.10 4%

10) Overbuilds & Upgrades 6,533,789 419,247 63.69 0.20 8%b

Total $79,167,566 $5,079,865 $771.67 $2.37 100%

The results of this table are considered the baseline analysis of the McAllen Northwest facility in itsa

current operating state (i.e., 78% production efficiency, 2006 dollars, overbuilds and upgrades are

included, and a zero net salvage value is recorded for all capital items and water rights).

Represents construction beyond the necessities and captures “elbow room” for future expansion, referb

to footnote 26 on page 52 in text.
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Figure 10.  Proportion of life-cycle costs, by segment, for the McAllen Northwest
facility
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Table 14.  Costs of Producing Water by Continued Cost Item for the McAllen
Northwest Facility in 2006 Dollarsa

Continued Cost Item

NPV of

Cost Stream

Annuity

Equivalent

in $/yr

Annuity

Equivalent

in $/ac-

ft/yr

Annuity

Equivalent

in $/1,000

gal/yr

% of

O&M

Cost

% of

Total

Cost

Administrative $1,671,130 $107,230 $16.29 $.05 -- 2%b

Operations &

Maintenance (O&M)b

-Energy  7,540,851 483,866 73.50 0.23 23% 10%

-Chemicals 5,789,663 371,499 56.43 0.17 17% 7%

-Labor 7,284,439 467,413 71.01 0.22 22% 9%

-Raw Water Delivery 9,472,261 607,797 92.33 0.28 28% 12%

-All Other 3,335,379 214,018 32.51 0.10 10% 4%

Sub-Total 33,422,593 2,144,593 325.78 1.00 100% 42%

Total $35,093,723 $2,251,823 $342.07 $1.05 44%

The results of this table are considered the baseline analysis of the McAllen Northwest facility in itsa

current operating state (i.e., 78% production efficiency, 2006 dollars, overbuilds and upgrades are

included, and a zero net salvage value is recorded for all capital items and water rights).

“Administrative” costs are incurred at the McAllen Public Utilities Board in association with theb

McAllen Northwest facility, while O&M costs are incurred at the facility. 



63

specification of the breakout of the specific operations and maintenance cost items and

their contribution to the total costs.  For the McAllen Northwest facility, the largest

operations and maintenance cost item is the cost of moving raw water from the Rio

Grande to the facility by the irrigation districts.  Over the life of the facility, McAllen

Utilities will spend $9.47 million (2006 dollars) for the expense of delivering the water,

which accounts for 12% of total costs for the facility and $92.33/ac-ft/yr {$0.28/1,000

gallons/yr}.  Closely behind this cost item are energy, labor, and chemical costs,

contributing 10%, 9%, and 7%, respectively.

Results for Key Sensitivity Analyses

The results presented in this thesis are deterministic (i.e., no stochastic or risk element

about data-input values), and are based on specific values for each of the input variables,

such as actual construction costs, continued costs, level of potable water production, etc.  

An estimate lacking a stochastic element is a point estimate; therefore, depending on the

accuracy of the input data, the results are not expected to be exactly precise (e.g., Popp

et al. 2004).  To further the deterministic results, the two-way data table feature of Excel

(Walkenbach 1996, pp. 570-77) is used to provide sensitivity analyses of the cost of

producing potable water (and delivering to a point within the distribution system) by

varying two of the input parameters.  Most data-input parameters in this analysis are

suitable for sensitivity analysis; however, for practical reasons, only the six parameters

thought most significant in influencing total costs were selected.
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Tables 15 and 16 report the sensitivities across plausible ranges for the expected useful

life and the facility-use efficiency rate.  Changes to the expected useful life of 50 years

are minus 5, 10, 15, 20, 25, and 30, bringing the tested low to 20 years for the expected

life, while changes to the baseline facility-use efficiency rate of 78% are analyzed with

variations ranging from a low of 50% to a high of 100%.  Using the given ranges of

variation, the annual cost of producing potable water for the McAllen Northwest facility

ranges from $673.57 to $1,220.68 per ac-ft in Table 15, and from $2.07 to $3.75 per

1,000 gallons in Table 16.  As expected, the lower the expected useful life, the higher

the costs of production.  Likewise, as expected, the higher the facility use-efficiency

rate, the lower the costs of production. 

Tables 17 and 18 report the sensitivities across plausible ranges for the initial water right

purchase price and the facility-use efficiency rate.  Changes to the initial water right

purchase price of $2,300 per ac-ft range from a low of $2,000 per ac-ft to a high of

$2,600 per ac-ft, while changes to the baseline facility-use efficiency rate of 78% are

analyzed with variations ranging from a low of 50% to a high of 100%.  Using the given

ranges of variation, the annual life-cycle cost of producing water for the McAllen

Northwest facility ranges from $653.34 to $1,061.83 per ac-ft in Table 17, and from

$2.01 to $3.26 per 1,000 gallons in Table 18.  As expected, the higher the initial water

right purchase price, the higher the costs of production.  Likewise, as expected, the

higher the facility use-efficiency rate, the lower the costs of production.  



Table 15.  Sensitivity Analysis of Cost of Treating Water ($/acre-foot) by Variations in Production and Expected Useful Life at McAllen

Northwest Facility in 2006 Dollars

Annual Water Production in acre-feet

Expected Useful 4,621 6,007 6,469 6,931 7,208  7,393   7,855 8,317 9,241

Life (Years) 50% 65% 70% 75% 78% 80% 85% 90% 100%

20 $1,220.68 $1,004.34 $952.83 $908.19 $884.16 $869.13 $834.67 $804.03 $751.95

25 1,137.68 942.57 896.11 855.85 834.17 820.62 789.54 761.91 714.94

30 1,088.92 906.96 863.63 826.08 805.86 793.23 764.24 738.47 694.66

35 1,058.86 885.55 844.29 808.52 789.27 777.23 749.62 725.08 683.36

40 1,040.51 872.98 833.09 798.52 779.91 768.27 741.58 717.86 677.53

45 1,028.69 865.26 826.35 792.63 774.47 763.12 737.09 713.94 674.60

50 1,021.36 860.84 822.62 789.50 771.67 760.52 734.95 712.21 673.57

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.

Table 16.  Sensitivity Analysis of Cost of Treating Water ($/1,000 gallons) by Variations in Production and Expected Useful Life at McAllen

Northwest Facility in 2006 Dollars

Annual Water Production in 1,000 gallons

Expected Useful 

Life (Years)

1,505,625 1,957,313 2,107,875 2,258,438 2,348,775 2,409,000 2,559,563 2,710,125 3,011,250

50% 65% 70% 75% 78% 80% 85% 90% 100%

20 $3.75 $3.08 $2.92 $2.79 $2.71 $2.67 $2.56 $2.47 $2.31

25 3.49 2.89 2.75 2.63 2.56 2.52 2.42 2.34 2.19

30 3.34 2.78 2.65 2.54 2.47 2.43 2.35 2.27 2.13

35 3.25 2.72 2.59 2.48 2.42 2.39 2.30 2.23 2.10

40 3.19 2.68 2.56 2.45 2.39 2.36 2.28 2.20 2.08

45 3.16 2.66 2.54 2.43 2.38 2.34 2.26 2.19 2.07

50 3.13 2.64 2.52 2.42 2.37 2.33 2.26 2.19 2.07

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.



Table 17.  Sensitivity Analysis of Cost of Treating Water ($/acre-foot) by Variations in Production and Initial Water-Right Purchase Price at

McAllen Northwest Facility in 2006 Dollars

Annual Water Production in acre-feet

Initial Water Right

Purchase Price

4,621 6,007 6,469 6,931 7,208  7,393   7,855 8,317 9,241

50% 65% 70% 75% 78% 80% 85% 90% 100%

 $2,000 $  980.89 $829.71 $793.72 $762.52 $745.72 $735.22 $711.14 $689.73 $653.34

  $2,100 994.38 840.09 803.35 771.51 754.37 743.66 719.07 697.23 660.08

 $2,200 1,007.87 850.47 812.99 780.51 763.02 752.09 727.01 704.72 666.83

  $2,300 1,021.36 860.84 822.62 789.50 771.67 760.52 734.95 712.21 673.57

 $2,400 1,034.85 871.22 832.26 798.49 780.31 768.95 742.88 719.71 680.32

 $2,500 1,048.34 881.60 841.90 807.49 788.96 777.38 750.82 727.20 687.06

 $2,600 1,061.83 891.97 851.53 816.48 797.61 785.81 758.75 734.70 693.80

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.

Table 18.  Sensitivity Analysis of Cost of Treating Water ($/1,000 gallons) by Variations in Production and Initial Water-Right Purchase Price

at McAllen Northwest Facility in 2006 Dollars

Annual Water Production in 1,000 gallons

Initial Water Right

Purchase Price

1,505,625 1,957,313 2,107,875 2,258,438 2,348,775 2,409,000 2,559,563 2,710,125 3,011,250

50% 65% 70% 75% 78% 80% 85% 90% 100%

 $2,000 $3.01 $2.55 $2.44 $2.34 $2.29 $2.26 $2.18 $2.12 $2.01

 $2,100 3.05 2.58 2.47 2.37 2.32 2.28 2.21 2.14 2.03

 $2,200 3.09 2.61 2.50 2.40 2.34 2.31 2.23 2.16 2.05

 $2,300 3.13 2.64 2.52 2.42 2.37 2.33 2.26 2.19 2.07

 $2,400 3.18 2.67 2.55 2.45 2.39 2.36 2.28 2.21 2.09

 $2,500 3.22 2.71 2.58 2.48 2.42 2.39 2.30 2.23 2.11

 $2,600 3.26 2.74 2.61 2.51 2.45 2.41 2.33 2.25 2.13

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.
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Tables 19 and 20 report the sensitivities across plausible ranges for the initial

construction cost and the facility-use efficiency rate.  Changes to the initial construction

cost range +/- $5,000 to the original $22,964,120, from a low of $17,964,120 to a high

of $27,964,120, while changes to the baseline facility-use efficiency rate of 78% are

analyzed with variations ranging from a low of 50% to a high of 100%.  Using the given

ranges of variation, the annual life-cycle cost of producing water for the McAllen

Northwest facility ranges from $635.56 to $1,097.39 per ac-ft in Table 19, and from

$1.95 to $3.37 per 1,000 gallons in Table 20.  As expected, the higher the initial

construction costs, the higher the costs of production.  Likewise, as expected, the higher

the facility use-efficiency rate, the lower the costs of production. 

Tables 21 and 22 report the sensitivities across plausible ranges for annual O&M cost

and the facility-use efficiency rate.  Changes about the annual O&M baseline cost of

$1,766,923 vary +/- 5%, 10%, and 20%, while changes to the baseline facility-use

efficiency rate of 78% are analyzed with variations ranging from a low of 50% to a high

of 100%.  Using the given ranges of variation, the annual life-cycle cost of producing

water for the McAllen Northwest facility ranges from $572.03 to $1,126.72 per ac-ft in

Table 21, and from $1.76 to $3.46 per 1,000 gallons in Table 22.  As expected, the

higher the annual O&M costs, the higher the costs of production.  Likewise, as expected,

the higher the facility use-efficiency rate, the lower the costs of production. 



Table 19.  Sensitivity Analysis of Cost of Treating Water ($/acre-foot) by Variations in Production and Initial Construction Cost at McAllen

Northwest Facility in 2006 Dollars

Annual Water Production in acre-feet

Initial Construction

Cost ($)

4,621 6,007 6,469 6,931 7,208  7,393   7,855 8,317 9,241

50% 65% 70% 75% 78% 80% 85% 90% 100%

-5,000,000 $  945.33 $802.36 $768.32 $738.82 $722.93 $713.00 $690.22 $669.98 $635.56

-2,500,000 983.35 831.60 795.47 764.16 747.30 736.76 712.58 691.09 654.56

-1,000,000 1,006.16 849.15 811.76 779.36 761.92 751.01 726.00 703.77 665.97

-  1,021.36 860.84 822.62 789.50 771.67 760.52 734.95 712.21 673.57

+1,000,000 1,036.57 872.54 833.49 799.64 781.41 770.02 743.89 720.66 681.17

 +2,500,000 1,059.38 890.08 849.78 814.84 796.03 784.28 757.31 733.33 692.58

 +5,000,000 1,097.39 919.33 876.93 840.19 820.40 808.04 779.67 754.45 711.58

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.

Table 20.  Sensitivity Analysis of Cost of Treating Water ($/1,000 gallons) by Variations in Production and Initial Construction Cost at

McAllen Northwest Facility in 2006 Dollars

Annual Water Production in 1,000 gallons

Initial Construction

Cost ($)

1,505,625 1,957,313 2,107,875 2,258,438 2,348,775 2,409,000 2,559,563 2,710,125 3,011,250

50% 65% 70% 75% 78% 80% 85% 90% 100%

-5,000,000 $2.90 $2.46 $2.36 $2.27 $2.22 $2.19 $2.12 $2.06 $1.95

-2,500,000 3.02 2.55 2.44 2.35 2.29 2.26 2.19 2.12 2.01

-1,000,000 3.09 2.61 2.49 2.39 2.34 2.30 2.23 2.16 2.04

-  3.13 2.64 2.52 2.42 2.37 2.33 2.26 2.19 2.07

+1,000,000 3.18 2.68 2.56 2.45 2.40 2.36 2.28 2.21 2.09

 +2,500,000 3.25 2.73 2.61 2.50 2.44 2.41 2.32 2.25 2.13

 +5,000,000 3.37 2.82 2.69 2.58 2.52 2.48 2.39 2.32 2.18

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.



Table 21.  Sensitivity Analysis of Cost of Treating Water ($/acre-foot) by Variations in Production and Annual Operations and Maintenance

(O&M)Cost at McAllen Northwest Facility in 2006 Dollars

Annual Water Production in acre-feet

Changes in Annual

O&M Cost (%)

4,621 6,007 6,469 6,931 7,208  7,393   7,855 8,317 9,241

50% 65% 70% 75% 78% 80% 85% 90% 100%

-30% $  916.01 $757.25 $719.45 $686.69 $669.05 $658.02 $632.73 $610.25 $572.03

-20% 951.12 791.78 753.84 720.96 703.25 692.19 666.80 644.23 605.87

-10% 986.24 826.31 788.23 755.23 737.46 726.35 700.87 678.22 639.72

- 1,021.36 860.84 822.62 789.50 771.67 760.52 734.95 712.21 673.57

 +10% 1,056.48 895.38 857.02 823.77 805.87 794.68 769.02 746.20 707.42

 +20% 1,091.60 929.91 891.41 858.04 840.08 828.85 803.09 780.19 741.27

 +30% 1,126.72 964.44 925.80 892.32 874.29 863.02 837.16 814.18 775.12

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.

Table 22.  Sensitivity Analysis of Cost of Treating Water ($/1,000 gallons) by Variations in Production and Annual Operations and

Maintenance (O&M) Cost at McAllen Northwest Facility in 2006 Dollars

Annual Water Production in 1,000 gallons

Changes in Annual

O&M Cost (%)

1,505,625 1,957,313 2,107,875 2,258,438 2,348,775 2,409,000 2,559,563 2,710,125 3,011,250

50% 65% 70% 75% 78% 80% 85% 90% 100%

-30% $2.81 $2.32 $2.21 $2.11 $2.05 $2.02 $1.94 $1.87 $1.76

-20% 2.92 2.43 2.31 2.21 2.16 2.12 2.05 1.98 1.86

-10% 3.03 2.54 2.42 2.32 2.26 2.23 2.15 2.08 1.96

- 3.13 2.64 2.52 2.42 2.37 2.33 2.26 2.19 2.07

 +10% 3.24 2.75 2.63 2.53 2.47 2.44 2.36 2.29 2.17

 +20% 3.35 2.85 2.74 2.63 2.58 2.54 2.46 2.39 2.27

 +30% 3.46 2.96 2.84 2.74 2.68 2.65 2.57 2.50 2.38

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.
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Tables 23 and 24 report the sensitivities across plausible ranges for annual energy cost

and the facility-use efficiency rate.  Changes about the annual energy baseline cost of

$379,672 vary +/- 5%, 10%, and 20%, while changes to the baseline facility-use

efficiency rate of 78% are analyzed with variations ranging from a low of 50% to a high

of 100%.  Using the given ranges of variation, the annual life-cycle cost of producing

water for the McAllen Northwest facility ranges from $658.87 to $1,036.06 per ac-ft in

Table 23, and from $2.02 to $3.18 per 1,000 gallons in Table 24.  As expected, the

higher the annual energy costs, the higher the costs of production.  Likewise, as

expected, the higher the facility use-efficiency rate, the lower the costs of production. 

Tables 25 and 26 report the sensitivities across plausible ranges for annual chemical cost

and the facility-use efficiency rate.  Changes about the annual chemical baseline cost of

$291,502 vary +/- 5%, 10%, and 20%, while changes to the baseline facility-use

efficiency rate of 78% are analyzed with variations ranging from a low of 50% to a high

of 100%.  Using the given ranges of variation, the annual life-cycle cost of producing

water for the McAllen Northwest facility ranges from $662.28 to $1,032.65 per ac-ft in

Table 25, and from $2.03 to $3.17 per 1,000 gallons in Table 26.  As expected, the

higher the annual chemical costs, the higher the costs of production.  Likewise, as

expected, the higher the facility use-efficiency rate, the lower the costs of production.  



Table 23.  Sensitivity Analysis of Cost of Treating Water ($/acre-foot) by Variations in Production and Annual Energy Costs at McAllen

Northwest Facility in 2006 Dollars

Annual Water Production in acre-feet

Changes in Annual 

Energy Cost (%)

4,621 6,007 6,469 6,931 7,208  7,393   7,855 8,317 9,241

50% 65% 70% 75% 78% 80% 85% 90% 100%

-20% $1,006.66 $846.14 $807.92 $774.80 $756.96 $745.82 $720.24 $697.51 $658.87

 -10% 1,014.01 853.49 815.27 782.15 764.32 753.17 727.59 704.86 666.22

 -5% 1,017.69 857.17 818.95 785.83 767.99 756.84 731.27 708.54 669.90

- 1,021.36 860.84 822.62 789.50 771.67 760.52 734.95 712.21 673.57

 +5% 1,025.04 864.52 826.30 793.18 775.34 764.19 738.62 715.89 677.25

 +10% 1,028.71 868.19 829.97 796.85 779.02 767.87 742.30 719.56 680.92

 +20% 1,036.06 875.54 837.32 804.20 786.37 775.22 749.65 726.91 688.27

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.

Table 24.  Sensitivity Analysis of Cost of Treating Water ($/1,000 gallons) by Variations in Production and Annual Energy Costs at McAllen

Northwest Facility in 2006 Dollars

Annual Water Production in 1,000 gallons

Changes in Annual

Energy Cost (%)

1,505,625 1,957,313 2,107,875 2,258,438 2,348,775 2,409,000 2,559,563 2,710,125 3,011,250

50% 65% 70% 75% 78% 80% 85% 90% 100%

 -20% $3.09 $2.60 $2.48 $2.38 $2.32 $2.29 $2.21 $2.14 $2.02

 -10% 3.11 2.62 2.50 2.40 2.35 2.31 2.23 2.16 2.04

 -5% 3.12 2.63 2.51 2.41 2.36 2.32 2.24 2.17 2.06

- 3.13 2.64 2.52 2.42 2.37 2.33 2.26 2.19 2.07

 +5% 3.15 2.65 2.54 2.43 2.38 2.35 2.27 2.20 2.08

 +10% 3.16 2.66 2.55 2.45 2.39 2.36 2.28 2.21 2.09

 +20% 3.18 2.69 2.57 2.47 2.41 2.38 2.30 2.23 2.11

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.



Table 25.  Sensitivity Analysis of Cost of Treating Water ($/acre-foot) by Variations in Production and Annual Chemical Costs at McAllen

Northwest Facility in 2006 Dollars

Annual Water Production in acre-feet

Changes in Annual

Chemical Cost (%)

4,621 6,007 6,469 6,931 7,208  7,393   7,855 8,317 9,241

50% 65% 70% 75% 78% 80% 85% 90% 100%

-20% $1,010.08 $849.56 $811.34 $778.21 $760.38 $749.23 $723.66 $700.93 $662.28

 -10% 1,015.72 855.20 816.98 783.86 766.02 754.87 729.30 706.57 667.93

 -5% 1,018.54 858.02 819.80 786.68 768.84 757.70 732.12 709.39 670.75

- 1,021.36 860.84 822.62 789.50 771.67 760.52 734.95 712.21 673.57

 +5% 1,024.18 863.66 825.45 792.32 774.49 763.34 737.77 715.04 676.39

 +10% 1,027.01 866.49 828.27 795.14 777.31 766.16 740.59 717.86 679.21

 +20% 1,032.65 872.13 833.91 800.79 782.95 771.80 746.23 723.50 684.86

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.

Table 26.  Sensitivity Analysis of Cost of Treating Water ($/1,000 gallons) by Variations in Production and Annual Chemical Costs at McAllen

Northwest Facility in 2006 Dollars

Annual Water Production in 1,000 gallons

Changes in Annual

Chemical Cost (%)

1,505,625 1,957,313 2,107,875 2,258,438 2,348,775 2,409,000 2,559,563 2,710,125 3,011,250

50% 65% 70% 75% 78% 80% 85% 90% 100%

 -20% $3.10 $2.61 $2.49 $2.39 $2.33 $2.30 $2.22 $2.15 $2.03

 -10% 3.12 2.62 2.51 2.41 2.35 2.32 2.24 2.17 2.05

 -5% 3.13 2.63 2.52 2.41 2.36 2.33 2.25 2.18 2.06

- 3.13 2.64 2.52 2.42 2.37 2.33 2.26 2.19 2.07

    +5% 3.14 2.65 2.53 2.43 2.38 2.34 2.26 2.19 2.08

 +10% 3.15 2.66 2.54 2.44 2.39 2.35 2.27 2.20 2.08

 +20% 3.17 2.68 2.56 2.46 2.40 2.37 2.29 2.22 2.10

Note: Numbers in bold represent the baseline results for the McAllen Northwest facility in its current operating state.
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 Already incorporated into baseline analysis of case study presented in this thesis.30

 For facilities constructed in different time periods, either inflation or deflation of the cost values is31

necessary to accommodate this stated benchmark period.

MODIFIED DATA INPUT AND RESULTS

The previous results presented in this thesis represent a case analysis of the McAllen

Northwest facility in its current operating state.  While the results were determined using

2the Net Present Value (NPV) and Annuity Equivalent approach in the CITY H O

ECONOMICS  model previously advocated as appropriate for “apples-to-apples”©

comparisons, certain modifications to key data-input parameters are required to the

baseline analysis in order to allow for a valid comparison across facilities and/or

technologies.  These adjustments allow for a more consistent basis of comparisons and

alter the base assumptions in the following ways:

• base period of analysis – assume the construction period commenced on January 1,

2006, thereby assuring all financial calculations are determined in a common time

frame;  30, 31

• level of annual production – assume a constant 85% rate of production relative to

actual maximum-designed daily capacity, thereby accommodating routine

maintenance, reasonable unexpected shutdown, and compliance with the TCEQ
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 TCEQ mandate 30 TAC 291.93(30) states that “A retail public utility that possesses a certificate of32

public convenience and necessity that has reached 85% of its capacity as compared to the most restrictive

criteria of the commission's minimum capacity requirements in Chapter 290 of this title shall submit to the

executive director a planning report that clearly explains how the retail public utility will provide the

expected service demands to the remaining areas within the boundaries of its certificated area” (Texas

Secretary of State 2008).

 Some individual facilities may not be able to fully attain the expected designed operating performance,33

e.g., abnormal arsenic, iron, and/or other objectionable water quality attributes for which original project

design was incomplete and subsequent operating conditions were adversely affected.  To facilitate correct

comparisons, such circumstances should be removed from the analysis calculations, thus assuming the

facility operates as originally designed/intended.

 ‘Overbuilds’ represent the excess construction completed to leave room for potential future expansions34

of the facility.  ‘Upgrades’ represent construction beyond a level deemed necessary for conventional water

treatment technology.

 Already incorporated into baseline analysis of case study presented in this thesis.35

 Admittedly, the opportunity cost value aspects of land well fields, water rights, and perhaps the capital36

assets associated with potable water production facilities can be argued to be net positive.  Projection of

such values 50+ years into the future are subject to a broad range of subjective assumptions, however. 

Furthermore, the financial discounting of such values 50+ years virtually eliminates the positive influence

of such calculations.

mandate 30 TAC 291.93(30) (Texas Secretary of State 2008), but avoiding the

potential bias associated with operating circumstances at this particular site;  32, 33

• overbuilds and upgrades – assume the construction design and other initial capital

investments are sufficient to maintain the reasonable operation of the facility, but

ignore those costs associated with “over-the-top” features intended to facilitate other

functions and/or future expansions;34

• salvage of capital assets – assume that all capital assets have a net salvage value of

zero, reflecting either (1) circumstances whereby costs of disposing of the assets and

returning the footprint of the property to its original state are virtually equivalent to

the assets’ salvage value and/or (2) the municipality’s investments are intended to be

long term, with no expectations of ever salvaging the assets;  35, 36
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  The contributors of this thesis do realize there are some quality comparisons that are impossible to37

make equal between facilities (i.e., desalination treatment can achieve a higher-quality water than

conventional treatment); however, it is felt that this standardization is the most feasible and appropriate.

• quality of raw water – the quality of the incoming source water will vary depending

on the location of the facility affecting the total treatment costs.  To establish a

consistent basis of comparison between facilities, the cost-input data should be

modified to account for variations in raw water quality.  Determination of

appropriate adjustments can be quite difficult, and currently there is no established

solution.  Although a solution for this modification has not been defined, it is

important to recognize the potential artifacts associated with comparing results for

water treatment facilities processing different qualities of raw water; and 

 

• quality of outgoing, product water – it is important that similar quality standards be

imposed on each of the analyses so that quality of water produced and associated

chemical and other operating costs are not adversely compromised in any of the

comparative projects.  The comparable quality standard assumed for this analysis is

the requirement that the product potable water pass both the maximum contaminant

levels and secondary levels set by both TCEQ and EPA.37

Incorporating considerations of the above-noted issues with the methodology embedded

2in CITY H O ECONOMICS  for the McAllen Northwest facility results in the©

“modified” life-cycle cost of producing potable water of $667.74/ac-ft/yr {$2.05/1,000
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 If the resale of water rights were included (assuming the rights are sold in year 53 and the price of the38

water rights increased with the inflation rate, meaning the initial $2,300/ac-ft price for water rights is

compounded forward 53 years using the 2.043% compounding rate resulting in a price sold of $6,450/ac-

ft), the life-cycle cost of producing water would be $644.91/ac-ft/yr {$1.98/1,000 gallons/yr}.

 Section 49.507 of Senate Bill 3 passed by the Texas Legislature in 2007 states that municipalities are39

now only required to pay 68% of the market value for permanent water rights converted from agricultural

to municipal use after January 1, 2008 in the Rio Grande Valley (Texas Legislature Online 2007).  In this

analysis, if the opportunity cost of water rights were valued at 68% of the original price ($2,300/ac-ft), the

adjusted price of water rights would be $1,564/ac-ft.  Such an adjustment would bring the adjusted, total

life-cycle cost of production in its modified operating state down from $667.74 to $609.33/ac-ft/yr

{$1.87/1,000 gallons/yr}.

gallons/yr} (Table 27).   These results are appropriately adjusted and suitable for38, 39

comparison to life-cycle costs of other alternatives for producing potable water

calculated using similar assumptions.

The following tables provide further demonstration of the changes to the original,

baseline life-cycle cost of production when the data is modified to include the

benchmark comparison assumptions.  Tables 28-30 show the life-cycle costs broken

down by cost type, segment, and item as presented in the preceding text.
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Table 27.  “Modified” Aggregate Results for Costs of Production at the McAllen
Northwest Facility in 2006 Dollarsa, b

Results Units Nominal Value Real Valuec

Initial Construction and Water Rights

Investment 

2006 dollars  $37,397,088  $37,397,088

NPV of Total Cost Stream 2006 dollars  $208,408,155 $74,653,110

- annuity equivalent $/yr  $4,790,190

Water Production ac-ft (lifetime) 392,750 156,012

- annuity equivalent ac-ft/yr 7,174

Water Production 1,000-gal (lifetime) 127,978,125 50,836,718

- annuity equivalent 1,000-gal/yr 2,337,580

Cost-of-Treating Water $/ac-ft/yr  $667.74

Cost-of-Treating Water $/1,000-gal/yr   $2.05

The results of this table are considered the adjusted analysis of the McAllen Northwest facility in itsa

modified operating state (i.e., 85% production efficiency, 2006 dollars, overbuilds and upgrades are not

included, and a zero net salvage value is recorded for all capital items and water rights).

Refer to Tables 28-30 for a more detailed analysis of the modified results.b

Determined using a 2.043% compound rate on costs, a 6.125% discount factor for dollars, a 4.000%c

discount factor for water, and a 0.000% risk factor (Rister et al. 2002).
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Table 28.  “Modified” Costs of Producing Water by Cost Type for the McAllen
Northwest Facility in 2006 Dollarsa

Cost Type

NPV of Cost

Stream

Annuity

Equivalent

in $/yr

Annuity

Equivalent

in $/ac-ft/yr

Annuity

Equivalent

in $/1000-

gal/yr

% of

Total

Initial Construction/

Investment $37,397,088 $2,399,621  $334.50 $1.03 50%

      -Water Rights Purchase 20,404,541 1,309,277  182.51  0.56 27%

Continued Costs  36,550,837 2,345,320  326.93 1.00 49%b

Capital Replacement 705,185 45,249 6.31  0.02 1%

      Total $74,653,110 $4,790,190 $667.74 $2.05 100%

The results of this table are considered the adjusted analysis of the McAllen Northwest facility in itsa

modified operating state (i.e., 85% production efficiency, 2006 dollars, overbuilds and upgrades are not

included, and a zero net salvage value is recorded for all capital items and water rights).

Refer to Table 30 for more details on “Continued Costs.”b
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Table 29.  “Modified” Costs of Producing Water for the Nine Facility Segments
of the McAllen Northwest Facility in 2006 Dollarsa

Facility Segment

NPV of Cost

Stream

Annuity

Equivalent

in $/yr

Annuity

Equivalent

in $/ac-

ft/yr

Annuity

Equivalent

in $/1,000-

gals/yr

% of

Total

Costs

1) Water Rights/Raw Water 

Intake/Reservoir

$38,415,293 $2,464,955 $343.61 $1.06 52%

2) Pre-Disinfection 8,841,251 567,308 79.08  0.24 12%

3) Coagulation/Flocculation 2,925,943 187,746  26.17  0.08 4%

4) Sedimentation 1,621,205 104,026  14.50 0.05 2%

5) Filtration/Backwash 3,621,486 232,376  32.39  0.10 5%

6) Secondary Disinfection 3,682,753 236,307 32.94  0.10 5%

7) Sludge Disposal 2,971,435 190,665  26.58 0.08 4%

8) Delivery to Municipal 

Line/Storage

9,196,149 590,080  82.26 0.25 12%

9) Operations' Supporting 

Facilities

3,377,595 216,727 30.21 0.09 4%

TOTAL $74,653,110 $4,790,190 $667.74 $2.05 100%

The results of this table are considered the adjusted analysis of the McAllen Northwest facility in itsa

modified operating state (i.e., 85% production efficiency, 2006 dollars, overbuilds and upgrades are not

included, and a zero net salvage value is recorded for all capital items and water rights).
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Table 30.  “Modified” Costs of Producing Water by Continued Cost Item for the
McAllen Northwest Facility  in 2006 Dollarsa

Continued Cost Item

NPV of Cost

Stream

Annuity

Equivalent

in $/yr

Annuity

Equivalent

in $/ac-

ft/year

Annuity

Equivalent

in $/1,000

gal/year

% of

O&M

Cost

% of

Total

Cost

Administrative $ 1,634,519 $104,880 $14.62 $0.05 -- 2%b

Operations &Maintenance

(O&M)

-Energy 7,888,890 506,198 70.56 0.22 23% 11%

-Chemicals 6,309,248 404,839 56.43 0.17 18% 9%

-Labor 7,124,847 457,173 63.73 0.19 20% 9%

-Raw Water Delivery 10,322,336 662,343 92.33 0.28 30% 14%

-All Other 3,270,999 209,887 29.26 0.09 9% 4%

Sub-Total 34,916,320 2,240,440 312.31 0.95 100% 47%

Total $36,550,837 $2,345,320 $326.93 $1.00 49%

The results of this table are considered the adjusted analysis of the McAllen Northwest facility in itsa

modified operating state (i.e., 85% production efficiency, 2006 dollars, overbuilds and upgrades are not

included, and a zero net salvage value is recorded for all capital items and water rights).

“Administrative” costs are incurred at the McAllen Public Utilities Board in association with theb

McAllen Northwest facility, while O&M costs are incurred at the facility.
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DISCUSSION

Historically, conventional surface-water treatment has been the preferred method of

producing potable (i.e., drinkable) water in the Valley, due to the seemingly-abundant

supply of Rio Grande surface water and the technology’s supposed lower cost of

production, relative to other available, feasible treatment methods.  The natural process

in potable water supply management decision making is to use the least expensive

source first.  Since untreated groundwater is not an option in this region (without first

undergoing desalination treatment), surface-water treatment is perceived as the most

logical choice as the least-cost available source for potable water, which is demonstrated

by the fact that an overwhelming majority (i.e., almost 90%) of water-treatment facilities

in the Valley use conventional surface-water treatment (Texas Commission on

Environmental Quality 2008).  

The ‘total’ cost of conventional surface-water treatment involves a large number of cost

factors and items as facilities can be very complex with many different components. 

Estimated results can therefore vary substantially, depending on what cost factors and

items are included/excluded in the analysis.  This case study for the McAllen Northwest

conventional surface-water treatment facility resulted in higher cost estimates

($2.37/1,000 gallons) than other recent literature (e.g., Jurenka, Martella, and Rodriguez

(2001) indicated potable water costs were between $1.00 and $1.70 per 1,000 gallons). 

The apparent substantial difference identified between the results in this thesis and
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previous studies could be due to a number of reasons.  First, the data utilized in this

thesis are primary data which provide a more in-depth and complete analysis than

reports built on secondary data, with the latter appearing to be the case for much of the

literature.  Most likely, additional principal reasons for differences in cost estimates are

related to the varying methods of analysis employed and the time-period of analysis.  In

general, when developing cost estimates, it is easy to realize a wide range of estimates

depending on the assumptions employed by the analyst(s) (e.g., including/excluding

present value of water rights, including/excluding overbuilds and excessive costs, base

year of analysis, etc.).  Since a primary objective of this thesis is to provide a protocol

for developing a complete ‘economic’ analysis of a surface-water treatment facility,

opportunity costs were included in the case study (e.g., present value of owned water

rights, present value of owned land, etc.); such costs might not be included if the

analyst(s) is (are) considering only accounting or purely financial costs.  The fact that

differing assumptions and methodology produce a wide range of cost estimates points to

the need for standardized measures of comparison and common methodology for use in

planning future potable water supply development.

  

The total cost estimates for conventional surface-water treatment are also dynamic (i.e.,

change over time) as input costs and other items change.  This thesis provides a snapshot

of the current operating costs of the McAllen Northwest facility for the year 2006, but in

reality, the costs of production are constantly changing.  Given the current environment

of rising concrete, steel, and energy prices, there is a trend of increasing input costs,
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 In talks with a Valley water treatment engineer, it is discovered that currently (i.e., 2008) total40

construction costs (i.e., cement, land, labor, etc.) for large capital projects are incurring an approximately

one percent increase per month, which amounts to a 10-12 percent annual escalation in the region (Cruz

2008).  If this substantial rate of increase continues, it will have an effect on total costs for water treatment

facilities constructed in the future (i.e., holding all other factors constant, if construction costs increase,

total costs will increase, and if construction costs decrease, total costs will also decrease).

which is not likely to reverse.   Also, following the events of September 11, 2001, there40

has been an increased awareness of the country’s security.  As a result, water security

and quality issues are on the rise, which may have an impact on future operating costs if

water treatment facility design and operations must be altered to accommodate increased

security concerns.  Over time, total costs of production for the McAllen Northwest

facility will change from their current level due to fluctuations in input prices and

facility-design requirements.

Some municipalities, in the Valley and elsewhere, only have the option of conventional

surface-water treatment.  Where alternatives do exist, an economic comparison of the

alternative technologies cannot be based on the prices charged for the treated, potable

water.  Since prices charged by utilities reflect the cost of distribution to the individual

households, as well as the varying fiscal management decisions by utility managers

(e.g., whether the water utilities division is a profit or cost center within the total

municipal operations mentioned in the Goldstein (1986) study referred to in the “Prior

Literature and Economic Studies” section), prices charged are not accurate predictors of

the costs of producing potable water.  To determine which alternative is the most

economical source of potable water, a sound and common methodology must be applied

to all technologies being considered.  This study, its considerations and methodology,
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are useful and can be used (with appropriate modifications) in multi-technology

comparisons. 

As mentioned in the “Introduction” section, potable water treatment alternatives to

conventional surface-water treatment for the Valley include groundwater/seawater

desalination, wastewater reuse, rainwater harvesting, etc.  Given recent advancements in

technology, the desalination of brackish groundwater is increasingly becoming an

economically and financially-feasible alternative.  The costs of desalinating groundwater

have decreased in recent years to the apparent extent that many water managers and

planners are asking themselves, “Which is the more economic source of potable water?” 

This dilemma is especially significant in the Texas Rio Grande Valley, where the price

of surface-water rights is steadily on the rise, in effect increasing the relative cost of

conventional surface-water treatment.  With a current price of $2,300/ac-ft (as opposed

to a price at $1,400/ac-ft in 2000 (Elium 2008)), which is expected to rise in the future at

a rate higher than inflation (Hinojosa 2007), municipal water rights expense will

continue to account for a greater proportion of the anticipated increasing total

conventional surface-water treatment costs.  For this case study, the water rights

accounted for 26% of total costs and delivery of such water from the Rio Grande to the

treatment facility contributed another 12% of total costs, i.e., obtaining source water

contributes to 38% of the total costs of potable water produced at the McAllen

Northwest surface-water treatment facility.
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 An ecological footprint is defined as “resource management tool that measures how much land and41

water area a human population requires to produce the resources it consumes and to absorb its wastes

under prevailing technology” (Global Footprint Network 2008).

Beyond analyzing the economic and financial competitiveness of conventional surface-

water treatment against alternative technologies, there are other logistical issues that

must be considered as population increases and the demand for water rises.  A

conventional surface-water treatment facility is a very land/resource intensive project

(e.g., the McAllen Northwest facility covers approximately 50 acres) which requires a

large ecological footprint.   The large land requirement is an issue where population41

centers become more dense and large, open land areas become more scarce.  Thus,

limitations from a physical constraint could become a higher priority in water supply

management decisions than economic efficiency in certain situations. 

The decisions behind whether or not to expand potable water supply and which water

treatment technology to employ are not easy for water planners and managers.  As

mentioned in the preceding paragraphs, there are many factors that must be considered

when deciding which water technology to use (i.e., economic costs, ecological footprint,

etc.).  In addition, water supply expansion projects take significant amounts of time to

plan, design, and construct.  This lengthy time period makes it especially difficult on

water planners and managers when population is increasing at a rapid rate.  In a region

that is experiencing rapid population growth such as the Rio Grande Valley, water

managers and planners are often forced to make hasty decisions about potable water

supply expansions.  Conventional surface-water treatment is just one of the options
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available, and while it has historically been the method of choice in the Valley region,

the optimal alternative could change in the future as other treatment technologies

develop and ecological and security requirements change.
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LIMITATIONS

This thesis would not be complete without an acknowledgment of the limitations of the

research presented.  Despite the advantages of having primary data from an operating

facility, this case study of the conventional water treatment technology is limited in the

fact that there is only one facility and one set of numbers presented.  If more facilities

and results were presented, one could be more confident of the accuracy of the results. 

2The results presented are also generated using a newly-developed model, CITY H 0

ECONOMICS , and represent the first application of this model.  The model has been©

verified, validated, and used, however, in another related research study (Boyer 2008;

Boyer et al. 2008), without identification of any major shortcomings.  

 

The section titled “Modified Data Input and Results” provides a list of suggested

adjustments to the data to encourage “leveling the playing field.”  There is one admitted

weakness in these modifications related to the absence of a solution for leveling the

quality of incoming, raw water in primary data analyses.  Although it is not essential to

this thesis, as only one facility is examined, when comparing multiple facilities the

quality of incoming water must be leveled to obtain a true comparison of facility

operating costs.  This missing solution is one unfinished topic that could be the subject

of future research.  There are other undeveloped areas of this thesis that have the

potential for future research.  For example, the methodology and ‘leveling’

modifications developed provide a standard of comparison that could be used to
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compare alternative potable water technologies to determine the most economically-

efficient option for the Lower Rio Grande Valley or elsewhere.  In addition, as

mentioned in the “Prior Literature and Economic Studies” section, there is some

suggestion in the literature of economies of size in water treatment technologies.  The

extent to which economies of size contribute to the costs of production could further be

examined for facilities of differing size.  
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CONCLUSIONS

This thesis provides an economic and financial analysis of the conventional surface-

water treatment technology using primary data from an operating 8.25 mgd facility,

McAllen Northwest.  A two-part methodology (NPV and annuity equivalent

calculations) is established which considers all costs over the life of the facility and

provides an accurate portrayal of future costs.  Current life-cycle costs of production

estimates for the McAllen Northwest facility are $771.67/ac-ft/yr {2.37/1,000

2gallons/yr}, and are generated using a newly-developed model, CITY H 0

ECONOMICS .  Beyond providing the ‘bottom-line’ costs of production, the model also©

enables a breakout of costs into cost type, section, and item.  This application of the

model provides the water managers and planners with detailed insight regarding the

most significant factors of cost to produce potable water.  Given the above conclusions,

the first null hypothesis stated in the “Objectives” section (i.e., “It is not possible to

construct/develop a comprehensive explanatory model and conduct an economic and

financial analysis of conventional surface-water treatment) is thereby rejected.

This thesis also establishes a standard protocol of comparison for analyzing water

treatment facilities.  This protocol is a contribution to the current literature which

represents a wide range of methodology and associated variance in results.  The factors

to be accounted for in the comparison across different facilities include modifications to

the following key data-input parameters: base period of analysis, level of annual
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production, exclusion of overbuilds and upgrades, salvage of capital assets, and quality

of incoming and outgoing, product water.  The “modified” results developed in this

thesis for McAllen Northwest, which are $667.74/ac-ft/yr {$2.05/1,000 gallons/yr}, are

reported on a current 2006 basis and are considered appropriate to compare to other

similarly-calculated values (e.g., Sturdivant et al. 2008).  The recognized necessity and

accomplishment of providing modified results which are appropriate for comparisons of

water treatment facilities thereby rejects the second null hypothesis stated in the

“Objectives” section (i.e., “Evaluations and comparisons of water treatment facilities

can be accomplished using primary (operating/case study) data”).
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