199 research outputs found

    Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF

    Get PDF
    Background To develop antibacterial agents having novel modes of action against bacterial cell wall biosynthesis, we targeted the essential MurF enzyme of the antibiotic resistant pathogen Pseudomonas aeruginosa. MurF catalyzes the formation of a peptide bond between D-Alanyl-D-Alanine (D-Ala-D-Ala) and the cell wall precursor uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid (UDP-MurNAc-Ala-Glu-meso-A2pm) with the concomitant hydrolysis of ATP to ADP and inorganic phosphate, yielding UDP-N-acetylmuramyl-pentapeptide. As MurF acts on a dipeptide, we exploited a phage display approach to identify peptide ligands having high binding affinities for the enzyme. Results Screening of a phage display 12-mer library using purified P. aeruginosa MurF yielded to the identification of the MurFp1 peptide. The MurF substrate UDP-MurNAc-Ala-Glumeso-A2pm was synthesized and used to develop a sensitive spectrophotometric assay to quantify MurF kinetics and inhibition. MurFp1 acted as a weak, time-dependent inhibitor of MurF activity but was a potent inhibitor when MurF was pre-incubated with UDP-MurNAc-Ala-Glu-meso-A2pm or ATP. In contrast, adding the substrate D-Ala-D-Ala during the pre-incubation nullified the inhibition. The IC50 value of MurFp1 was evaluated at 250 μM, and the Ki was established at 420 μM with respect to the mixed type of inhibition against D-Ala-D-Ala. Conclusion MurFp1 exerts its inhibitory action by interfering with the utilization of D-Ala-D-Ala by the MurF amide ligase enzyme. We propose that MurFp1 exploits UDP-MurNAc-Ala-Glu-meso-A2pm-induced structural changes for better interaction with the enzyme. We present the first peptide inhibitor of MurF, an enzyme that should be exploited as a target for antimicrobial drug development

    Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa

    Get PDF
    Antibiotic resistance is a worldwide health issue spreading quickly among human and animal pathogens, as well as environmental bacteria. Misuse of antibiotics has an impact on the selection of resistant bacteria, thus contributing to an increase in the occurrence of resistant genotypes that emerge via spontaneous mutation or are acquired by horizontal gene transfer. There is a specific and urgent need not only to detect antimicrobial resistance but also to predict antibiotic resistance in silico. We now have the capability to sequence hundreds of bacterial genomes per week, including assembly and annotation. Novel and forthcoming bioinformatics tools can predict the resistome and the mobilome with a level of sophistication not previously possible. Coupled with bacterial strain collections and databases containing strain metadata, prediction of antibiotic resistance and the potential for virulence are moving rapidly toward a novel approach in molecular epidemiology. Here, we present a model system in antibiotic-resistance prediction, along with its promises and limitations. As it is commonly multidrug resistant, Pseudomonas aeruginosa causes infections that are often difficult to eradicate. We review novel approaches for genotype prediction of antibiotic resistance. We discuss the generation of microbial sequence data for real-time patient management and the prediction of antimicrobial resistance

    Comparative Signature-Tagged Mutagenesis Identifies Pseudomonas Factors Conferring Resistance to the Pulmonary Collectin SP-A

    Get PDF
    The pulmonary collectin, surfactant protein A (SP-A), is a broad spectrum opsonin with microbicidal membrane permeabilization properties that plays a role in the innate immune response of the lung. However, the factors that govern SP-A's microbial specificity and the mechanisms by which it mediates membrane permeabilization and opsonization are not fully understood. In an effort to identify bacterial factors that confer susceptibility or resistance to SP-A, we used comparative signature-tagged mutagenesis to screen a library of 1,680 Pseudomonas aeruginosa mutants for evidence of differential pulmonary clearance in SP-A-sufficient (SP-A(+/+)) and SP-A-deficient (SP-A(−/−)) mice. Two SP-A-sensitive P. aeruginosa mutants harboring transposon insertions in genes required for salicylate biosynthesis (pch) and phosphoenolpyruvate-protein-phosphotransferase (ptsP) were recovered. The mutants were indistinguishable from the parental wild-type PA01 with regard to opsonization by SP-A, but they exhibited increased susceptibility to SP-A-mediated membrane permeabilization. These results suggest that bacterial gene functions that are required to maintain membrane integrity play crucial roles in resistance of P. aeruginosa to the permeabilizing effects of SP-A

    Functional Annotation of the Ophiostoma novo-ulmi Genome: Insights into the Phytopathogenicity of the Fungal Agent of Dutch Elm Disease

    No full text
    International audienceThe ascomycete fungus Ophiostoma novo-ulmi is responsible for the pandemic of Dutch elm disease that has been ravaging Europe and North America for 50 years. We proceeded to annotate the genome of the O. novo-ulmi strain H327 that was sequenced in 2012. The 31.784-Mb nuclear genome (50.1% GC) is organized into 8 chromosomes containing a total of 8,640 protein-coding genes that we validated with RNA sequencing analysis. Approximately 53% of these genes have their closest match to Grosmannia clavigera kw1407, followed by 36% in other close Sordariomycetes, 5% in other Pezizomycotina, and surprisingly few (5%) orphans. A relatively small portion (~3.4%) of the genome is occupied by repeat sequences; however, the mechanism of repeat-induced point mutation appears active in this genome. Approximately 76% of the proteins could be assigned functions using Gene Ontology analysis; we identified 311 carbohydrate-active enzymes, 48 cytochrome P450s, and 1,731 proteins potentially involved in pathogen– host interaction, along with 7 clusters of fungal secondary metabolites. Complementary mating-type locus sequencing, mating tests, and culturing in the presence of elm terpenes were conducted. Our analysis identified a specific genetic arsenal impacting the sexual and vegetative growth, phytopathogenicity, and signaling/plant–defense–degradation relationship between O. novo-ulmi and its elm host and insect vectors. Introduction During the last centuries, increased movements of people and goods across countries and continents have favored the emergence and global spread of plant pathogens, insect pests, and invasive weeds which have substantially altered the landscape of several parts of the world. One well-documented example is Dutch elm disease (DED), the most destructive disease of elms. It has been estimated that over 1 billion mature elms were killed by two successive pandemics since the early 1900s (Paoletti et al. 2005). The first pandemic, which prompted initial investigations by Dutch scientists shortly after the First World War (Holmes and Heybroek 1990), was caused by the ascomycete fungus Ophiostoma ulmi (Buisman) Nannf. As it spread relentlessly over Western Europe and, a few decade

    Genes required for free phage production are essential for pseudomonas aeruginosa chronic lung infections

    Get PDF
    The opportunistic pathogen Pseudomonas aeruginosa causes chronic lung infection in patients with cystic fibrosis. The Liverpool Epidemic Strain LESB58 is highly resistant to antibiotics, transmissible, and associated with increased morbidity and mortality. Its genome contains 6 prophages and 5 genomic islands. We constructed a polymerase chain reaction (PCR)-based signature-tagged mutagenesis library of 9216 LESB58 mutants and screened the mutants in a rat model of chronic lung infection. A total of 162 mutants were identified as defective for in vivo maintenance, with 11 signature-tagged mutagenesis mutants having insertions in prophage and genomic island genes. Many of these mutants showed both diminished virulence and reduced phage production. Transcription profiling by quantitative PCR and RNA-Seq suggested that disruption of these prophages had a widespread trans-acting effect on the transcriptome. This study demonstrates that temperate phages play a pivotal role in the establishment of infection through modulation of bacterial host gene expression

    Prophage induction reduces Shiga toxin producing \u3ci\u3eEscherichia coli\u3c/i\u3e (STEC) and Salmonella enterica on tomatoes and spinach: A model study

    Get PDF
    Fresh produce is increasingly implicated in foodborne outbreaks and most fresh produce is consumed raw, emphasizing the need to develop non-thermal methods to control foodborne pathogens. This study investigates bacterial cell lysis through induction of prophages as a novel approach to control foodborne bacterial pathogens on fresh produce. Shiga toxin producing Escherichia coli (STEC) and Salmonella enterica isolates were exposed to different prophage inducers (i.e. mitomycin C or streptonigrin) and growth of the cells was monitored by measuring the optical density (OD600) during incubation at 37C. Beginning at three hours after addition of the inducer, all concentrations (0.5, 1, 2 mg/mL) of mitomycin C, or 2 mg/mL streptonigrin significantly reduced the OD600 in broth cultures, in a concentration dependent manner, relative to cultures where no inducer was added. PCR confirmed bacterial release of induced bacteriophages and demonstrated that a single compound could successfully induce multiple types of prophages. The ability of mitomycin C to induce prophages in STEC O157:H7 and in S. enterica (serovars Typhimurium and Newport) on fresh produce was evaluated by inoculating red greenhouse tomatoes or spinach leaves with 5 x 107 and 5 x 108 colony forming units, respectively. After allowing time for the inoculum to dry on the fresh produce samples, 6 mg/mL mitomycin C was sprayed onto each sample, while control samples were sprayed with water. Following overnight incubation at 4C, the bacterial cells were recovered and plate counts were performed. A 3 log reduction in STEC O157:H7 cells was observed on tomatoes sprayed with mitomycin C compared to those sprayed with water, while a 1 log reduction was obtained on spinach. Similarly, spraying mitomycin C on tomatoes and spinach inoculated with S. enterica isolates resulted in a 1-1.5 log and 2 log reduction, respectively. These findings serve as a proof of concept that prophage induction can effectively control bacterial foodborne pathogens on fresh produce

    Tracking <em>Salmonella</em> Enteritidis in the Genomics Era: Clade Definition Using a SNP-PCR Assay and Implications for Population Structure

    Get PDF
    Salmonella enterica serovar Enteritidis (or Salmonella Enteritidis, SE) is one of the oldest members of the genus Salmonella, based on the date of first description and has only gained prominence as a significant bacterial contaminant of food over the last three or four decades. Currently, SE is the most common Salmonella serovar causing foodborne illnesses. Control measures to alleviate human infections require that food isolates be characterized and this was until recently carried out using Pulsed-Field Gel Electrophoresis (PFGE) and phage typing as the main laboratory subtyping tools for use in demonstrating relatedness of isolates recovered from infected humans and the food source. The results provided by these analytical tools were presented with easy-to-understand and comprehensible nomenclature, however, the techniques were inherently poorly discriminatory, which is attributable to the clonality of SE. The tools have now given way to whole genome sequencing which provides a full and comprehensive genetic attributes of an organism and a very attractive and superior tool for defining an isolate and for inferring genetic relatedness among isolates. A comparative phylogenomic analysis of isolates of choice provides both a visual appreciation of relatedness as well as quantifiable estimates of genetic distance. Despite the considerable information provided by whole genome analysis and development of a phylogenetic tree, the approach does not lend itself to generating a useful nomenclature-based description of SE subtypes. To this end, a highly discriminatory, cost-effective, high throughput, validated single nucleotide based genotypic polymerase chain reaction assay (SNP-PCR) was developed focussing on 60 polymorphic loci. The procedure was used to identify 25 circulating clades of SE, the largest number so far described for this organism. The new subtyping test, which exploited whole genome sequencing data, displays the attributes of an ideal subtyping test: high discrimination, low cost, rapid, highly reproducible and epidemiological concordance. The procedure is useful for identifying the subtype designation of an isolate, for defining the population structure of the organism as well as for surveillance and outbreak detection

    A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas.

    Get PDF
    Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s

    Comparative genomics of isolates of a pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients

    Get PDF
    Pseudomonas aeruginosa is the main cause of fatal chronic lung infections among individuals suffering from cystic fibrosis (CF). During the past 15 years, particularly aggressive strains transmitted among CF patients have been identified, initially in Europe and more recently in Canada. The aim of this study was to generate high-quality genome sequences for 7 isolates of the Liverpool epidemic strain (LES) from the United Kingdom and Canada representing different virulence characteristics in order to: (1) associate comparative genomics results with virulence factor variability and (2) identify genomic and/or phenotypic divergence between the two geographical locations. We performed phenotypic characterization of pyoverdine, pyocyanin, motility, biofilm formation, and proteolytic activity. We also assessed the degree of virulence using the Dictyostelium discoideum amoeba model. Comparative genomics analysis revealed at least one large deletion (40-50 kb) in 6 out of the 7 isolates compared to the reference genome of LESB58. These deletions correspond to prophages, which are known to increase the competitiveness of LESB58 in chronic lung infection. We also identified 308 non-synonymous polymorphisms, of which 28 were associated with virulence determinants and 52 with regulatory proteins. At the phenotypic level, isolates showed extensive variability in production of pyocyanin, pyoverdine, proteases and biofilm as well as in swimming motility, while being predominantly avirulent in the amoeba model. Isolates from the two continents were phylogenetically and phenotypically undistinguishable. Most regulatory mutations were isolate-specific and 29% of them were predicted to have high functional impact. Therefore, polymorphism in regulatory genes is likely to be an important basis for phenotypic diversity among LES isolates, which in turn might contribute to this strain's adaptability to varying conditions in the CF lung

    Variational quantum Monte Carlo study of two-dimensional Wigner crystals: exchange, correlation, and magnetic field effects

    Full text link
    The two-dimensional Wigner crystals are studied with the variational quantum Monte Carlo method. The close relationship between the ground-state wavefunction and the collective excitations in the system is illustrated, and used to guide the construction of the ground-state wavefunction of the strongly correlated solid. Exchange, correlation, and magnetic field effects all give rise to distinct physical phenomena. In the absence of any external magnetic field, interesting spin-orderings are observed in the ground-state of the electron crystal in various two-dimensional lattices. In particular, two-dimensional bipartite lattices are shown not to lead necessarily to an antiferromagnetic ground-state. In the quantum Hall effect regime, a strong magnetic field introduces new energy and length scales. The magnetic field quenches the kinetic energy and poses constraints on how the electrons may correlate with each other. Care is taken to ensure the appropriate translational properties of the wavefunction when the system is in a uniform magnetic field. We have examined the exchange, intra-Landau-level correlation as well as Landau-level-mixing effects with various variational wavefunctions. We also determine their dependences on the experimental parameters such as the carrier effective mass at a modulation-doped semiconductor heterojunction. Our results, when combined with some recent calculations for the energy of the fractional quantum Hall liquid including Landau-level-mixing, show quantitatively that in going from nn-doping to pp-doping in GaAS/AlGaASGaAS/AlGaAS heterojunction systems, the crossover filling factor from the fractional quantum Hall liquid to the Wigner crystal changes from filling factor ν1/5\nu \sim 1/5 to ν1/3\nu \sim 1/3. This lends strong support to the claim that theComment: LaTex file, 14 figures available from [email protected]
    corecore