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a b s t r a c t

Fresh produce is increasingly implicated in foodborne outbreaks and most fresh produce is consumed
raw, emphasizing the need to develop non-thermal methods to control foodborne pathogens. This study
investigates bacterial cell lysis through induction of prophages as a novel approach to control foodborne
bacterial pathogens on fresh produce. Shiga toxin producing Escherichia coli (STEC) and Salmonella
enterica isolates were exposed to different prophage inducers (i.e. mitomycin C or streptonigrin) and
growth of the cells was monitored by measuring the optical density (OD600) during incubation at 37 �C.
Beginning at three hours after addition of the inducer, all concentrations (0.5, 1, 2 mg/mL) of mitomycin C,
or 2 mg/mL streptonigrin significantly reduced the OD600 in broth cultures, in a concentration dependent
manner, relative to cultures where no inducer was added. PCR confirmed bacterial release of induced
bacteriophages and demonstrated that a single compound could successfully induce multiple types of
prophages. The ability of mitomycin C to induce prophages in STEC O157:H7 and in S. enterica (serovars
Typhimurium and Newport) on fresh produce was evaluated by inoculating red greenhouse tomatoes or
spinach leaves with 5� 107 and 5� 108 colony forming units, respectively. After allowing time for the
inoculum to dry on the fresh produce samples, 6 mg/mL mitomycin C was sprayed onto each sample,
while control samples were sprayed with water. Following overnight incubation at 4 �C, the bacterial
cells were recovered and plate counts were performed. A 3 log reduction in STEC O157:H7 cells was
observed on tomatoes sprayed with mitomycin C compared to those sprayed with water, while a 1 log
reduction was obtained on spinach. Similarly, spraying mitomycin C on tomatoes and spinach inoculated
with S. enterica isolates resulted in a 1-1.5 log and 2 log reduction, respectively. These findings serve as a
proof of concept that prophage induction can effectively control bacterial foodborne pathogens on fresh
produce.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, fresh produce has been implicated in an
increasing number of foodborne outbreaks involving different
bacterial pathogens, including Shiga toxin producing Escherichia
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coli (STEC) and S. enterica (Bennett, Littrell, Hill, Mahovic, &
Behravesh, 2015; Callejon et al., 2015; CDC, 2011, 2013; Dechet
et al., 2014; Herman, Hall, & Gould, 2015; McCollum et al., 2013).
Contamination of fresh produce can occur on the farm, pre- or post-
harvest, and all along the different steps of the food production
chain because of inadequate hygiene, agricultural and/or
manufacturing practices (EFSA, 2013, 2014). There are currently no
effective means to completely remove foodborne pathogens from
fresh produce during post-harvest processing steps, such as
washing (Goodburn & Wallace, 2013; Hellstrom, Kervinen, Lyly,
Ahvenainen-Rantala, & Korkeala, 2006). Furthermore, the major-
ity of fresh produce is consumed raw, thereby eliminating the
possibility of using heat to inactivate pathogens which may be
present. Finally, a global trend towards eating more fruits and
vegetables, as part of a healthy lifestyle, has been observed over the
last thirty years (European Commission, 2007). Together, these
factors contribute to an increased likelihood of contracting food-
borne illnesses from eating fresh produce. Retrospective analyses of
USA outbreak and epidemiological data for the period 1998e2008
indicated that 46% of illnesses were attributable to fresh produce
(Painter et al., 2013) and Salmonellawas themost common bacterial
etiological agent (Gould et al., 2013). Analysis of Canadian outbreak
data for 2001e2009 confirmed this trend and showed that Sal-
monella was responsible for 50% of incidents linked to fresh pro-
duce (Kozak, MacDonald, Landry,& Farber, 2013). Since 2008, there
have been at least 18 salmonellosis outbreaks linked to fresh pro-
duce in the USA (CDC, 2017). A recent and large outbreak occurred
in 2015 and involved contaminated cucumbers, which resulted in
907 cases and 6 deaths (CDC, 2017).

Some antimicrobial-based strategies to control pathogens on
fresh produce have been developed with varying success. The
majority of reported techniques include addition of organic acids,
essential oils, bacteriocins, or a combination thereof, directly on
foods to inhibit bacterial growth or destroy the pathogen
(Azizkhani, Elizaquivel, Sanchez, Selma, & Aznar, 2013; Bari et al.,
2005; Ganesh, Hettiarachchy, Griffis, Martin, & Ricke, 2012;
Landry, Chang, McClements, & McLandsborough, 2014; Leverentz
et al., 2003; Oliveira, Abadias, Colas-Meda, Usall, & Vinas, 2015;
Park et al., 2011). Unfortunately, these methods generally have poor
efficacy and/or alter the organoleptic qualities of the food, resulting
in an undesirable product for the consumer. Also, while post-
harvest washing, using chlorinated water, is often employed, it is
not considered an intervention step, but is used instead to limit
cross contamination (Gombas et al., 2017). During the past decade,
bacteriophages (phages) have emerged as a new class of antimi-
crobials for the control of bacterial pathogens on foods. In this
approach, cocktails of virulent phages are applied onto the food to
control specific pathogens (Goodridge & Bisha, 2011; Leverentz
et al., 2003; Magnone, Marek, Sulakvelidze, & Senecal, 2013;
Oliveira et al., 2015; Sulakvelidze, 2013). This approach is depen-
dent on the ability of a phage to successfully infect its bacterial host,
which depends on a number of factors, including pH and temper-
ature, which can limit the utility of the technology for specific foods
and pathogens (J. W. Kim et al., 2012; Tsonos et al., 2014). The
approach is also limited when trying to control a single diverse
pathogenic species such as S. enterica, which contains more than
2500 serovars; as such, current commercial phage cocktails to
control Salmonella are limited to only a few serovars that cause the
majority of salmonellosis cases (Grant, Parveen, Schwarz, Hashem,
& Vimini, 2017; K. H.; Kim, Lee, Jang, Kim, & Kim, 2013; Woolston
et al., 2013). Also, current phage cocktails are designed to reduce
a single pathogenic species or pathotype of bacteria, such as STEC,
S. enterica, or Listeria monocytogenes. Given these factors, and that
multiple bacterial foodborne pathogens can be associated with a
single food commodity (Callejon et al., 2015; Gould et al., 2013),

there is a need to design a more robust and effective antimicrobial
approach which will be able to target a broader spectrum of
foodborne pathogens present on fresh produce and other foods.

Genomic analyses demonstrate that most bacterial genome se-
quences deposited in public databases contain prophage sequences
(Canchaya, Proux, Fournous, Bruttin, & Brussow, 2003; Kang et al.,
2017). This includes the presence of prophages integrated within
the genomes of foodborne bacterial pathogens, such as Salmonella
spp., L. monocytogenes, E. coli, Shigella spp., and Vibrio spp. (Allison
& Verma, 2000; Hayashi et al., 2001; Herold, Karch, & Schmidt,
2004; Klumpp & Loessner, 2013; Moreno Switt et al., 2013;
Waldor & Mekalanos, 1996). In fact, the ability of STEC to produce
Shiga toxin and Vibrio cholerae to produce Cholera toxin is due to
the integration of toxin encoding prophages (Brabban, Hite, &
Callaway, 2005; Gamage, Patton, Hanson, & Weiss, 2004; Herold
et al., 2004; Wagner & Waldor, 2002; Waldor & Mekalanos,
1996). Phages exhibit one of two lifestyles: a virulent lifestyle and
a temperate lifestyle. In contrast to virulent phages, which can only
grow lytically, temperate phages display lysogenic growth, mean-
ing that once they infect their bacterial host, the phage DNA in-
tegrates into the bacterial chromosome (and becomes known as a
prophage). Once integrated, prophages remain dormant until the
cell experiences some form of stress, which will then induce the
phages to activate their lytic cycle, replicate and lyse their host cell
(Oppenheim, Kobiler, Stavans, Court, & Adhya, 2005). Different
forms of stress that have been reported to induce prophages
include hydrogenperoxide, ultraviolet light, and antibiotics, such as
mitomycin C and streptonigrin (Cao et al., 2012; Gerner-Smidt,
Rosdahl, & Frederiksen, 1993; Gervasi, Curto, Narbad, & Mayer,
2013; Horgan et al., 2010; Lan et al., 2009; Levine & Borthwick,
1963; Los, Los, Wegrzyn, & Wegrzyn, 2010; McDonnell, 2014;
Mmolawa, Willmore, Thomas, & Heuzenroeder, 2002; Muschel &
Schmoker, 1966; Pryshliak, Hammerl, Reetz, Strauch, & Hertwig,
2014; Wallin-Carlquist et al., 2010; Wormser & Pardee, 1957; Yee,
De Grandis, & Gyles, 1993). In this study, cell lysis through induc-
tion of prophages was investigated as a novel approach to control
bacterial pathogens on fresh produce.

2. Materials and methods

2.1. Bacterial strains and growth conditions

Strains used in this study are listed in Table 1. E. coli MC185 is a
fluoroquinolone-resistant strain isolated from raccoon feces
contaminating an agricultural production system, the STEC
O157:H7 strain EC920333 was isolated from a bovine source, and
the Shiga toxin negative E. coli O157:H7 strain was isolated from
human feces. STEC O157:H7 and S. enterica serovars Typhimurium
and Newport were chosen because they have been previously
linked to outbreaks involving fresh produce (Callejon et al., 2015;
CDC, 2012, 2017; Herman et al., 2015). Specifically, the S. Newport
strain used in this study was involved in an international outbreak
linked to sprouted chia seed powder (Harvey et al., 2017). All strains
were grown on tryptic soy agar (TSA; Becton, Dickinson and
Company, Sparks, Maryland, USA) from frozen stock, followed by
subculture in tryptic soy broth (TSB; Oxoid Ltd, Basingstoke,
Hampshire, England), unless indicated otherwise. Ciprofloxacin
(2.5 mg/mL) was added to overnight cultures of E. coli MC185 to
promote a selective growth environment. All strains were grown at
37 �C in an orbital shaker set at 225 rpm.

2.2. Induction of prophages

A 5mL volume of TSB was inoculated with an overnight culture
to a starting OD600 equivalent to 0.1. The cells were grown to mid-
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logarithmic phase, at which point subinhibitory concentrations of
the prophage inducers, mitomycin C (0.5e6 mg/mL) (Sigma, St
Louis, Missouri, USA) or streptonigrin (0.25e2 mg/mL) (Sigma),
were added to the culture. Following addition of the inducers,
growth of the cells was monitored over time by measuring the
OD600 using a spectrophotometer (Ultrospec 100 Pro, Biochrom
Ltd; Cambridge, England). To determine the number of viable cells
after 20 h of treatment with 2 mg/mL mitomycin C, the cells were
collected by centrifugation at 5,000�g for 10min at room tem-
perature, washed three times with phosphate-buffered saline
(PBS), pH 7.5, diluted and plated onto TSA. The resulting number of
colony forming units (CFU) were counted after incubating the
plates at 37 �C for 20 h.

2.3. Tomato experiment

The stem scar of fresh Beefsteak greenhouse tomatoes was
inoculated with 5� 107 CFU of an overnight culture of the respec-
tive bacteria. After allowing time for the inoculum to dry on the
tomato samples, 5mL of mitomycin C (2 or 6 mg/mL) was sprayed
on the complete tomato surface, while control tomatoes were
sprayed with an equal volume of water. Following overnight
treatment at 4 �C, the tomatoes were immersed in 25mL PBS and
manually agitated for 2min. The surviving bacterial cells were
collected from the PBS by centrifugation (15,000�g for 2min),
washed three times with PBS to remove any residual inducer, and
plate counts were performed. E. coli strain MC185 was plated onto
TSA þ2.5 mg/mL ciprofloxacin, STEC O157:H7 was plated onto Sor-
bitol MacConkey Agar (Oxoid Ltd), and the Salmonella spp. strains
were plated on XLT4 Agar (Fluka Analytical e Sigma).

2.4. Spinach experiment

A sample of five pre-washed baby spinach leaves (cultivars C2-
606, Escalade, and Stanton) were inoculated with a total of
5� 108 CFU of an overnight culture of the respective bacteria. After
allowing time for the inoculum to dry on the spinach samples, 5mL
of mitomycin C (6 mg/mL) was sprayed onto the entire top surface of
the spinach leaves, while an equal volume of water was sprayed
onto control spinach leaves. The spinach leaveswere exposed to the
mitomycin C overnight at 4 �C. The next day, 25mL PBS was added
to the spinach and the sample was homogenized for 2min in a
stomacher (Stomacher Lab-Blender 400, Seward Laboratory Sys-
tem, London, England). The surviving bacterial cells were counted
as described for the tomatoes.

2.5. DNA extraction

Bacterial DNAwas extracted from an overnight culture using the
DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany) per the
manufacturer’s instructions. To extract phage DNA, the viral parti-
cles were collected from the lysates of bacterial cells exposed to the
inducer for 20 h. The lysates were prepared as previously described
(Y. Zhang & LeJeune, 2008). To remove any potentially contami-
nating bacterial DNA, lysates were treated with 1 mg/mL DNase I

(Roche Diagnostics, Indianapolis, Indiana, USA) for 30min at 37 �C
and the enzyme was then inactivated by incubating the lysate at
75 �C for 15min. Previous studies indicated that this approach was
efficient at degrading DNA (data not shown). Following the DNAse
treatment, viral particles were concentrated by adding a 1:100 (w/
vol) ratio of Amberlite IRA-900 ion-exchange resin (Acros Organics,
New Jersey, USA) to the treated lysate and incubating at room
temperature for 60min, while continuously mixing (Perez-
Mendez, Chandler, Bisha, & Goodridge, 2014). Phage DNA was
extracted from the particles bound to the resin beads by resus-
pending the beads in 200 mL of 0.85% saline. Following this step, the
rest of the DNA extraction procedure was performed using the
QIAamp MinElute Virus Spin kit (Qiagen) according to the manu-
facturer’s instructions, where the resuspended beads were used
instead of plasma or serum.

2.6. Amplification of phage-specific genes

PCR of prophage integrase genes was used to confirm the
presence of prophages within bacterial genomes and the release of
induced phages upon cell lysis. The integrase genes from phages
with similarities to l, SfII, Fels2, and P2 were amplified as previ-
ously described (Balding, Bromley, Pickup, & Saunders, 2005) using
a Peltier Thermal Cycler (PTC-100, Bio-Rad, Hercules, California,
USA). After amplification, PCR products were separated using the
QIAxcel automated capillary electrophoresis system with a DNA
high resolution cartridge (Qiagen) following the manufacturer’s
instructions.

2.7. Whole genome sequencing and bioinformatics analysis

Whole genome sequencing was performed at the EcoGenomics
Analysis Platform (IBIS, Universit�e Laval, Qu�ebec, Canada). Initially,
sequencing libraries were constructed using the KAPA Hyper Prep
kit (Kapa Biosystems, Wilmington, MA, USA) per the manufac-
turer’s instructions. Each 300-bp paired-end library was sequenced
on an Illumina MiSeq instrument (Illumina technology, San Diego,
CA, USA) with 30X coverage. The raw reads were assembled de novo
using the A5 pipeline (Tritt, Eisen, Facciotti, & Darling, 2012) and
annotation was performed using RAST (Overbeek et al., 2014).
Whole genome sequences have been deposited at DDBJ/ENA/Gen-
Bank under accession numbers NPKK00000000 for E. coli MC185
and NPIW00000000 for S. Newport. The whole genome sequence
of S. Typhimurium strain LT2 (NC_003197.2) was retrieved from the
National Center for Biotechnology Information database. Prophage
regions within the bacterial genomes were identified using
PHASTER (Arndt et al., 2016).

2.8. Statistical analysis

All experiments were independently performed in triplicate and
the data are plotted as average values taken from repeat experi-
ments± the standard deviation. Statistical analysis was performed
using GraphPad QuickCalcs (GraphPad Software, San Diego, CA,
USA). An unpaired, 2-tailed Student t-test was used to determine

Table 1
List of strains used in this study.

Taxon Strain Origin

Escherichia coli MC185 USDA National Wildlife Research Centre
Escherichia coli O157:H7 EC920333 Health Canada
Escherichia coli O157:H7 e Shiga toxin negative 43888 American Type Culture Collection
Salmonella Typhimurium LT2 American Type Culture Collection
Salmonella Newport 131174 Laboratoire de Sant�e Publique du Qu�ebec

B. Cadieux et al. / Food Control 89 (2018) 250e259252



statistically significant differences (P< 0.05) between the treated
and control samples.

3. Results

3.1. Mitomycin C induces prophages within E. coli resulting in cell
death

The presence of two prophages, with similarities to phages l
and SfII, was detected within E. coli MC185 by amplifying phage-
specific integrase genes from the bacterial DNA (Fig. 1A). Addi-
tionally, whole genome sequence analysis revealed the presence of
phages l and SfII, as well as two additional prophages identified as
Fels2 and phi4795, in the genome of E. coli MC185. To determine
whether the prophages identified in E. coli MC185 could be
induced, cells were exposed to different subinhibitory concentra-
tions of mitomycin C, a potent prophage inducer (Mmolawa et al.,
2002; Yee et al., 1993). After 1.5 h, a decrease in OD600 was
already observed at some concentrations of mitomycin C (i.e.
1e2 mg/mL), and this decrease was more significant over time and
as the subinhibitory concentration of mitomycin C increased
(Fig. 1B). These observations suggest successful prophage induction
and potential lysis of the bacterial cell. To further support the hy-
pothesis that cell lysis resulted from prophage induction, phage
particles were isolated from the bacterial lysate after the cells had
been exposed to mitomycin C for 20 h. Subsequently, the phage
DNAwas extracted and phage-specific integrases were amplified to
confirm the presence of prophages in the bacterial lysate. Indeed,
the integrases of phages l and SfII were identified in the purified
lysate, indicating the release of these phages from the bacterial host

cell upon cell lysis (Fig. 1A).
Next, the ability of mitomycin C to induce prophages in STEC

O157:H7 was examined. Treatment of STEC O157:H7 with mito-
mycin C exhibited a decrease in OD600, which began at 3 h after
addition of the inducing compound (Fig. 1C); a similar trend to that
observed with E. coli strain MC185. The number of surviving cells
after 20 h of exposure to mitomycin C was determined by
measuring the CFU. Presence of mitomycin C resulted in a 4 log
reduction in the number of cells for both E. coli strains compared to
untreated cells, confirming that the observed decrease in OD600
was due to phage-dependent cell death (Fig. 1D). Taken together,
these results demonstrate that subinhibitory concentrations of
mitomycin C effectively induced prophages within the different
strains of E. coli used here, and that induction led to cell lysis and
death.

3.2. Streptonigrin also induces prophages within E. coli

The ability of different concentrations of streptonigrin, another
prophage inducer (Levine& Borthwick,1963;Muschel& Schmoker,
1966), to induce prophages in E. coli was evaluated. As with mito-
mycin C, treatment of E. coli strain MC185 with streptonigrin
resulted in a decrease in OD600 starting at 3 h, which became more
significant over time and with higher concentrations of the inducer
(Fig. 2A). Addition of streptonigrin to cultures of STEC O157:H7 also
resulted in a significant decrease in OD600 by 3 h (Fig. 2B). These
findings indicate that subinhibitory concentrations of streptonigrin
induce prophages within the E. coli strains used in this study, which
results in a decrease in cell numbers.
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3.3. Mitomycin C reduces the number of E. coli cells on fresh
produce

The next step was to determine if lysing bacterial pathogens by
inducing the prophages within the cells could be used to efficiently
control E. coli on tomatoes. Preliminary experiments demonstrated
that 2 mg/mL mitomycin C was not sufficient to allow detection of
prophage induction in E. coli cells inoculated onto tomatoes, while
6 mg/mL mitomycin C resulted in a detectable level of induction
(Fig. 3A). Additional preliminary work, using a Shiga toxin negative
E. coli O157:H7 isolate that did not contain inducible prophages,
showed that 6 mg/mL mitomycin C did not inhibit growth,
demonstrating that this concentration was sub-inhibitory (Fig. 3B).
Consequently, a subinhibitory concentration of 6 mg/mL mitomycin
C was used for the subsequent in vivo studies. Similarly to the ex-
periments conducted in broth cultures, exposure to mitomycin C
significantly reduced the number of E. coli cells on tomatoes
compared to control tomatoes sprayed with water. A 3.5 log and 3
log reduction were obtained for E. coli MC185 and O157:H7,
respectively (Fig. 3C).

A similar approach was used to determinewhether mitomycin C
could also reduce the number of E. coli on fresh spinach. The sur-
vival rate of E. coli on spinach sprayed with water was similar to
that obtained on tomatoes (Fig. 3CeD). Additionally, exposure to
mitomycin C successfully decreased the number of surviving E. coli
cells on spinach by 1.5 log and 1 log for E. coli MC185 and O157:H7,
respectively, compared to spinach sprayed with water (Fig. 3D).
Together, these findings provide the proof of concept that prophage
induction can effectively be used to control E. coli strains, including
STEC O157:H7, on different types of fresh produce.

3.4. Mitomycin C induces prophages within S. enterica

The ability of mitomycin C to induce prophages within Salmo-
nella spp was also examined. Amplification of phage-specific inte-
grase genes from the bacterial DNA of the Salmonella strains
identified two prophageswith similarities to phages P2 and Fels2 in
S. Newport and S. Typhimurium, respectively (Fig. 4A). Similarly,
whole genome sequence analysis revealed the presence of Fels2
and Gifsy2 in S. Typhimurium, while Gifsy1 and Fels1 were present
in the bacterial genomes of S. Typhimurium and S. Newport.
Exposure of S. Typhimurium and S. Newport to mitomycin C
resulted in a decrease in OD600, at 1.5 h after addition of mitomycin
C for cultures of S. Newport and 3 h for S. Typhimurium, compared

to untreated cells, and OD600 values remained low beyond 20 h, as
was observed with strains of E. coli (Fig. 4B vs 1C). Furthermore,
prophage induction resulted in bacterial concentrations that were
more than 3 logs lower for both S. Typhimurium and S. Newport
when the cells were exposed to mitomycin C for 20 h, compared to
untreated cells (Fig. 4C).

The presence of integrase genes of phages with similarities to P2
and Fels2 were identified in phages recovered from the S. Newport
and S. Typhimurium lysates, respectively (Fig. 4A), suggesting that
prophages were induced and lysed the bacterial host cells upon
release of the phage. Together, these data confirm that subinhibi-
tory concentrations of mitomycin C successfully induced prophages
foundwithin the two different serovars of Salmonella, which lead to
cell lysis and resulted in a decrease in the number of surviving cells.

3.5. Mitomycin C reduces the concentration of S. enterica on fresh
produce

Finally, the use of mitomycin C was evaluated to control
different serovars of S. enterica, S. Typhimurium or S. Newport, on
fresh tomatoes and spinach. In tomatoes, treatment with mito-
mycin C resulted in a 1 log reduction for S. Typhimurium and a 1.5
log reduction for S. Newport, when compared to control tomatoes
sprayed with water (Fig. 4D). A 2 log reduction was observed for
both S. enterica serotypes on spinach treated with mitomycin C
compared to those sprayed with water (Fig. 4E). Overall, these re-
sults demonstrate the feasibility of using prophage inducers to
control Salmonella spp. on fresh produce and that this approach can
target multiple foodborne pathogens with a single inducing
compound.

4. Discussion

The current study demonstrates the feasibility of using pro-
phage inducers as a novel approach to efficiently control bacterial
pathogens on fresh produce. The success of this antimicrobial
approach is dependent on the presence of prophage(s) within
target bacteria. Studies of more than 11,000 bacterial genomes
demonstrated that most bacterial species contain prophages, and
identified the presence of multiple prophages within these ge-
nomes (Canchaya et al., 2003; Kang et al., 2017). Studies have also
identified prophages within the genome of foodborne pathogens
(Allison & Verma, 2000; Hayashi et al., 2001; Herold et al., 2004;
Klumpp & Loessner, 2013; Moreno Switt et al., 2013; Waldor &
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Mekalanos, 1996). Perhaps the most striking example of this is the
STEC O157:H7 Sakai strain, which contains 18 prophage genomic
elements, representing 16% of the total bacterial genomic content
(Canchaya et al., 2003). Additionally, we recently analyzed 1,355
Salmonella genomes from the Salmonella Food Syst-OMICs (SalFoS)
database (https://salfos.ibis.ulaval.ca/), and determined that at least
90% of these genomes contained prophages (data not shown).
Collectively, these studies support the potential of prophage in-
duction in controlling bacterial pathogens in food.

In this study, subinhibitory concentrations of mitomycin C and
streptonigrin were used as inducers and were shown to effectively
induce multiple prophages within E. coli, S. Typhimurium and S.
Newport, and consequently led to cell lysis of the bacterial host.
Mitomycin C, an antibiotic that inhibits DNA synthesis via inter-
calation and adduct formation (Iyer & Szybalski, 1963, 1964;
Tomasz & Palom, 1997), has been reported to be a potent pro-
phage inducer capable of inducing a wide range of phages in
various foodborne bacterial pathogens including E. coli, S. enterica
serovar Typhimurium, L. monocytogenes, Vibrio vulnificus, Vibrio
parahaemolyticus, Clostridium perfringens, Clostridium difficile, and
Staphylococcus aureus among others (Cao et al., 2012; Gerner-Smidt
et al., 1993; Gervasi et al., 2013; Horgan et al., 2010; Lan et al., 2009;
Mmolawa et al., 2002; Pryshliak et al., 2014; Wallin-Carlquist et al.,
2010; Yee et al., 1993). Streptonigrin is another antibiotic shown to
induce prophages in bacteria (Levine& Borthwick,1963;Muschel&
Schmoker, 1966). In this case, the antibiotic mechanism involves

causing irreversible cleavage of nucleic acids (Cohen, Shaw,& Craig,
1963; Miller, Laszlo, McCarty, Guild, & Hochstein, 1967). In vitro
experiments were carried out with mid-exponential phase cells to
evaluate whether prophage induction would lead to growth
cessation of the bacterial host, which would not have been possible
if stationary phase cells were used. However, stationary phase cells
were used in experiments involving fresh produce, because, Sal-
monella does not actively grow on fresh produce. Therefore sta-
tionary phase cells are more representative of the growth state of
bacterial cells that would be naturally found on fresh produce,
although lag phase cells could also be present.

We have established that sprayingmitomycin C on tomatoes can
lead to as much as a 3.5 log reduction of the targeted bacterial
population, while a reduction of up to 2 logs was observed on
spinach. Previous studies on the ability of other antimicrobial
strategies to control pathogens on food have exhibited varying
success (Azizkhani et al., 2013; Bari et al., 2005; Ganesh et al., 2012;
Landry et al., 2014; Leverentz et al., 2003; Magnone et al., 2013;
Oliveira et al., 2015; Park et al., 2011). For example, organic and
inorganic acids, including malic, tartaric, lactic and phosphoric
acids, sprayed electrostatically on spinach previously inoculated
with STEC O157:H7 (7.0 log CFU/mL) yielded a 1.1e4.0 log CFU/g
reduction (Ganesh et al., 2012). Emulsions of essential oils derived
from various plants (e.g. oregano, clove, thyme) have also been
studied as potential antimicrobials. Carvacrol, the essential oil
found in oregano, resulted in a 2e3 log reduction of STEC O157:H7
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and S. Enteritidis on sprout seeds incubated at ambient tempera-
ture and a 0.5 log reduction of STEC O157:H7 on baby leaf salads
stored at 7 �C (Azizkhani et al., 2013; Landry et al., 2014). Factors
such as the type of antimicrobial approach used, the organism(s)
targeted, the food matrix, the pH, the temperature, the exposure
time, and the concentration of the antimicrobial were all shown to
influence the outcome of the challenge studies performed. The use
of phages to control bacterial foodborne pathogens has previously
been demonstrated by spraying virulent phage cocktails on food,
including fresh produce. For example, a recent study, in which
phages were used to control STEC O157:H7 on fresh produce at 4 �C
and 25 �C, reported a 2.4e3.0 log CFU/g reduction on cut green
peppers and a 3.4e3.5 log CFU/g reduction on spinach leaves
(Snyder, Perry, & Yousef, 2016). A different group examined the
effectiveness of phage cocktails introduced in packaging materials
to control L. monocytogenes on cantaloupes or E. coli O104:H4 on
alfalfa sprouts (Lone et al., 2016). A 1e2 log reduction in the number
of L. monocytogenes on cantaloupes and a 1 log reduction of E. coli
on germinated sprouts was observed. However, the efficacy of this
type of phage-based antimicrobial method relies on successful

infection of the bacterial host by the phage, which can be limited by
the host range of the phage, as well as composition of the food
matrix, pH, and temperature (J. W. Kim et al., 2012; Tsonos et al.,
2014).

The prophage induction approach described here offers several
advantages over traditional phage therapy approaches. In contrast
to traditional phage-based antimicrobial approaches, the com-
pounds used in this study, mitomycin C and streptonigrin, are not
reliant on phage-host interactions, and instead, cause DNA damage
and initiate the SOS response in bacteria (Campoy et al., 2006). The
bacterial SOS system consists of several genes aimed at guaran-
teeing cell survival in the presence of extensive DNA damage
(Walker, 1984), and is induced by the activation of RecA after it
binds to single-stranded DNA fragments (ssDNA) (Sassanfar &
Roberts, 1990). Activated RecA promotes the autocatalytic cleav-
age of the LexA repressor, resulting in prevention of LexA from
binding to its specific recognition motif in the promoter region of
SOS genes, thereby allowing the transcription of all the genes
required in the SOS response (Campoy et al., 2006). In addition to
the genes directly regulated by LexA, the induction of the SOS
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response, via ssDNA activation of RecA, promotes cleavage of other
repressors, including lytic cycle repressors of temperate phages
(Roberts & Roberts, 1975; Sauer, Ross, & Ptashne, 1982).

In addition, multiple studies have demonstrated the formation
of bacteriophage insensitive mutants (BIMs) due to mutations in
bacterial cell surface appendages used as phage receptors (Labrie,
Samson, & Moineau, 2010; O’Flynn, Ross, Fitzgerald, & Coffey,
2004). These mutations could significantly limit the effectiveness
of traditional phage-based approaches. As the SOS response is
germane to bacterial survival in the presence of DNA damaging
compounds and stresses (Baharoglu & Mazel, 2014), the prophage
induction approach described here would seem to target an
essential cellular response, making it difficult for bacterial cells to
develop resistance to this approach.

In this study, single inducing compounds, including mitomycin
C and streptonigrin, were shown to induce at least five different
prophages in E. coli and Salmonella, meaning that bacteria would
potentially have to develop non-SOS based mechanisms to disrupt
induction of multiple types of prophages to overcome this
approach. Furthermore, as these, and related prophages, have been
observed within the genomes of bacterial isolates from many
bacterial species (Kang et al., 2017), a single compound could be
used to simultaneously induce prophages (and therefore destroy
bacteria) from multiple bacterial species. This represents an
important advantage over traditional phage-based antimicrobials,
which target only a single bacterial species. Further studies will be
required to determine whether other inducers will effectively
induce a broad range of phages. A combination of different inducers
could also be used to ensure that many prophages from different
bacterial species are induced. Thus, the prophage induction
approach could simultaneously control multiple pathogens on
foods, as well as extend the shelf life of foods by targeting several
bacterial species involved in food spoilage.

As the mitomycin C and streptonigrin compounds used in this
study are antibiotics, and could not be used in foods due to con-
cerns over antibiotic resistance, the results presented here repre-
sent a proof of concept that prophage induction can be an effective
approach to control foodborne pathogens. Future studies will focus
on the identification of natural, non-antibiotic prophage inducers.
For example, hydrogen peroxide is already used as an antimicrobial
to control the presence of bacterial pathogens in foods (McDonnell,
2014), and has been shown to cause DNA damage mediated pro-
phage induction (Los et al., 2010).

One potential concern regarding the use of prophage induction
as a method to reduce bacterial pathogens in foods is the possibility
of horizontal transfer of virulence and antimicrobial resistance
(AMR) genes from the induced prophages to other bacteria. While
horizontal gene transfer due to prophage induction has received
much discussion in the scientific literature, at least one recent study
has called into question the frequency of temperate phage-based
horizontal gene transfer (Enault et al., 2017). According to their
observations, the authors concluded that the presence of AMR
genes in temperate phages tends to be vastly overestimated. Recent
metagenomic studies demonstrating the presence of AMR genes in
temperate phages have not demonstrated transfer of these genes to
other bacteria (Quiros et al., 2014). In addition, most of this work
has been conducted in vitro, with few studies being conducted on
prophage transduction of AMR and virulence genes in vivo. Where
such studies have been conducted, temperate phage-based hori-
zontal gene transfer generally did not occur. For example, one
recent study directly examined prophage induction and horizontal
gene transfer in animals. In that work, the authors used meta-
genomics to evaluate the effect of two antibiotics in feed (carbadox
and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on
swine intestinal phage metagenomes (Allen et al., 2011). They also

monitored the bacterial communities using 16S rRNA gene
sequencing. The authors observed that AMR genes, such as multi-
drug resistance efflux pumps, were identified in the phage meta-
genomes, but in-feed antibiotics caused no significant changes in
their abundance. The abundance of phage integrase-encoding
genes was significantly increased in the phage metagenomes of
medicated swine over that of non-medicated swine, demonstrating
the induction of prophages with antibiotic treatment. This means
that while prophages were induced in the swine gut, this did not
result in horizontal transfer of AMR genes from the prophages to
bacteria. In another study, Cornick, Helgerson, Mai, Ritchie, and
Acheson (2006) evaluated the ability of a kanamycin-marked
Shiga toxin encoding phage to move into a commensal, ovine
E. coli strain in the ruminant gastrointestinal tract. While trans-
ductionwas detected in 19/24 samples, subtherapeutic doses of the
quinolone antibiotic, enrofloxacin, did not increase the rate of
transduction.

Several in vivo studies conducted in mice have demonstrated
temperate phage transduction of virulence genes to bacteria. For
example, subtherapeutic doses of ciprofloxacin given to
streptomycin-treated mice increased the concentration of intra-
intestinal Shiga toxin andmortality compared to control mice, even
though the viable number of STEC O157:H7 decreased by three
orders of magnitude (X. Zhang et al., 2000). In another study, an
increase in phage transduction also occurred in mice inoculated
with an E. coli K-12 strain carrying a kanamycin-marked Shiga toxin
encoding phage and treated with subtherapeutic doses of
ciprofloxacin, when compared to the transduction rate in control
mice (Cornick et al., 2006). However, the pre-treatment of the
mouse intestine with antibiotics, such as streptomycin, which
removes a majority of the natural facultative intestinal flora, may
facilitate donor-recipient cell interaction within the intestine.

These studies, when taken collectively, and combined with the
fact that prophage induction occurs regularly in the animal gut (De
Paepe, Leclerc, Tinsley, & Petit, 2014), suggests that concerns
regarding temperate phage-based horizontal transfer of virulence
and AMR genes may be exaggerated. Additional in vivo studies will
need to be conducted before definitive conclusions regarding pro-
phage induction and horizontal gene transfer can be made.

5. Conclusion

The present study serves as a clear proof of concept that the
prophage induction approach described here has the potential to
work as a practical and effective antimicrobial technique. Such an
intervention could be used in the food industry to eliminate
contaminating bacterial pathogens resulting in safer fruits and
vegetables for human consumption. Future studies will be required
to determine if this method can be used to inactivate other food-
borne bacterial pathogens which can be found in fresh produce.
Moreover, the use of this novel method needs to be evaluated for its
ability to control foodborne pathogens on other potentially haz-
ardous foods, such as meat, poultry, eggs, and dairy products.
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