22 research outputs found

    Cryptochrome-Related Abiotic Stress Responses in Plants

    Get PDF
    It is well known that light is a crucial environmental factor that has a fundamental role in plant growth and development from seed germination to fruiting. For this process, plants contain versatile and multifaceted photoreceptor systems to sense variations in the light spectrum and to acclimate to a range of ambient conditions. Five main groups of photoreceptors have been found in higher plants, cryptochromes, phototropins, UVR8, zeitlupes, and phytochromes, but the last one red/far red wavelengths photoreceptor is the most characterized. Among the many responses modulated by phytochromes, these molecules play an important role in biotic and abiotic stress responses, which is one of the most active research topics in plant biology, especially their effect on agronomic traits. However, regarding the light spectrum, it is not surprising to consider that other photoreceptors are also part of the stress response modulated by light. In fact, it has become increasingly evident that cryptochromes, which mainly absorb in the blue light region, also act as key regulators of a range of plant stress responses, such as drought, salinity, heat, and high radiation. However, this information is rarely evidenced in photomorphogenetic studies. Therefore, the scope of the present review is to compile and discuss the evidence on the abiotic stress responses in plants that are modulated by cryptochromes

    Seed priming with sodium nitroprusside attenuates the effects of water deficit on soybean seedlings

    Get PDF
    Considering that water deficit is one of the main environmental factors responsible for low soybean yield and that nitric oxide (NO) has been shown to be a fundamental part of plant defense signaling during stress, the aim of the present study was to evaluate the effect of seed priming with nitric oxide on the induction of water deficit tolerance during the initial development of soybean. Thus, seeds were treated with 0 (water only), 50, 100 or 250 μmol.L-1 sodium nitroprusside for 6 hours. Additionally, untreated seeds were used. After drying, the seeds were placed in containers filled with a commercial substrate mixture and vermiculite and irrigated to 100% and 50% field capacity. Biometric and biochemical evaluations (pigment and proline contents) were performed after 14 days. It was concluded that pretreatment of soybean seeds with 50 to 250 μmol.L-1 SNP attenuated the effects of water deficit on stem growth, leaf area, and shoot dry matter and induced carotenoid biosynthesis. The accumulation of proline in the leaves was pronounced in the treatments with 100 and 250 μmol.L-1 SNP, while 100 μmol.L-1 SNP induced proline accumulation in the roots.Considering that water deficit is one of the main environmental factors responsible for low soybean yield and that nitric oxide (NO) has been shown to be a fundamental part of plant defense signaling during stress, the aim of the present study was to evaluate the effect of seed priming with nitric oxide on the induction of water deficit tolerance during the initial development of soybean. Thus, seeds were treated with 0 (water only), 50, 100 or 250 μmol.L-1 sodium nitroprusside for 6 hours. Additionally, untreated seeds were used. After drying, the seeds were placed in containers filled with a commercial substrate mixture and vermiculite and irrigated to 100% and 50% field capacity. Biometric and biochemical evaluations (pigment and proline contents) were performed after 14 days. It was concluded that pretreatment of soybean seeds with 50 to 250 μmol.L-1 SNP attenuated the effects of water deficit on stem growth, leaf area, and shoot dry matter and induced carotenoid biosynthesis. The accumulation of proline in the leaves was pronounced in the treatments with 100 and 250 μmol.L-1 SNP, while 100 μmol.L-1 SNP induced proline accumulation in the roots

    Analysis of the interactions between phytochrome and plant hormones in plant development

    No full text
    Muitas respostas moduladas pela luz durante o desenvolvimento das plantas também são reguladas por hormônios vegetais, levando à hipótese da interação entre ambos os fatores. Uma ferramenta valiosa para testar tal interação seria o uso de mutantes fotomorfogenéticos e hormonais, bem como duplos mutantes combinando ambos. Em tomateiro, embora sejam disponíveis mutantes com alterações na biossíntese de fotorreceptores e/ou na transdução do sinal da luz, bem como mutantes no metabolismo e/ou sensibilidade hormonal, esses estão presentes em cultivares diferentes, o que pode limitar seu uso de modo integrado e a construção de duplos mutantes. No presente trabalho, foram introgredidas em uma única cultivar de tomateiro, Micro-Tom (cv. MT), dezenove mutações afetando a biossíntese ou a resposta a fitocromo, bem como aos hormônios auxina (AUX), citocinina (CK), giberelina (GA), ácido abscísico (ABA), etileno (ET) e brassinoesteróides (BR). Tomando-se vantagem de tal coleção, duas respostas notadamente controladas tanto pela luz quanto por hormônios foram estudadas: alongamento e acúmulo de antocianinas em hipocótilos. Para tal, foram utilizadas as seguintes abordagens: i) tratamentos exógenos de diferentes classes hormonais em mutantes fotomorfogenéticos, ii) observação de hipocótilos de mutantes hormonais crescidos na luz e no escuro, iii) observação de duplos mutantes combinando mutações hormonais e fotomorfogenéticas. Assim, o acúmulo de antocianinas foi promovido pela CK e ABA e inibido pela GA, concordando com a redução no mutante deficiente em ABA (notabilis ou not) e no mutante hipersensível à GA (procera ou pro). Apesar do mutante com baixa sensibilidade à AUX (diageotropica ou dgt) acumular exageradamente antocianinas, a aplicação exógena não evidenciou o papel da AUX, sendo, porém, coerente com a sugestão de que esse mutante possui um balanço AUX/CK voltado para CK. Tanto a aplicação exógena quanto a avaliação nos mutantes epinastic (epi), super produção de ET, e Never ripe (Nr), baixa sensibilidade ao ET, sugerem uma função limitada desse hormônio na biossíntese de antocianinas. Na luz e no escuro, AUX, CK, ABA e ET exógenos resultaram na inibição do alongamento do hipocótilo, sendo coerente com a promoção em dgt (luz), promoção em sit (luz), inibição em epi (luz e escuro). Por outro lado, GA promoveu o alongamento corroborando a promoção em pro. Contrariando o efeito exógeno da CK, brt reduziu o alongamento na luz e no escuro. No escuro, o único mutante que apresentou alongamento do hipocótilo superior a MT foi o mutante deficiente na biossíntese do phy (aurea ou au). A utilização de duplos mutantes combinando phy- e alterações hormonais mostrou uma interação aditiva (au epi, au Nr, au dgt e au sit), sinergística (au pro) e epinástica (au brt) no acúmulo de antocianinas e alongamento do hipocótilo na luz, porém nessa última resposta, au dgt e au sit indicaram uma interação sinergística. Juntos, esses resultados indicam que, embora phy possui vias distintas da AUX, ET, ABA e GA no controle do acúmulo de antocianinas e alongamento do hipocótilo, parece que esse fotorreceptor partilha vias comuns com CK em ambas as respostas.Many responses regulated by light during plant development are also regulated by plant hormones, suggesting an interaction between these factors. One important approach to test this hypothesis is the use of photomorphogenic and hormonal mutants and double mutant analysis. Mutants with altered photoreceptor biosynthesis, light signal transduction, hormonal metabolism and hormonal sensitivity are available in tomato. However, since they are in different cultivars, this can be a limitation for their use in a comprehensive study, as well as, for the construction of double mutants. In this work we performed the introgression of nineteen mutations in a single cultivar of tomato, Micro- Tom (cv. MT). These mutations affect biosynthesis or response to phytochrome (phy), auxin (AUX), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), ethylene (ET) and brassinosteroid (BR). Using this collection of hormone mutants, we studied two responses which are controlled by light and hormones: elongation and anthocyanin accumulation in hypocotyls. For this purpose, we used three approaches: i) hormonal treatment in the photomorphogenic mutants, ii) measurement of hypocotyl lengths from hormonal mutants grown under light and dark conditions and iii) double mutant (photomorphogenic-hormonal) analysis. Anthocyanin accumulation was promoted by CK and ABA and inhibited by GA. This is in accordance with the reduction of anthocyanin accumulation in the ABA deficient mutant (not) and in the GA hypersensitive mutant (pro). Although the diageotropica (dgt), auxin-insensitive mutant, showed a high anthocyanin accumulation, the addition of auxin did not supported a role for this hormone in anthocyanin accumulation. On the other hand, this could be due to a low auxin-tocytokinin ratio presented by dgt. Data from mutants with altered metabolism and sensitivity of ethylene, epinastic (epi) and Never ripe (Nr) respectively, and from plants treated with this hormone suggest a limited role of ethylene in the anthocyanin biosynthesis. Exogenous AUX, CK, ABA and ET inhibited the hypocotyl elongation. This is coherent with the promotion of hypocotyl elongation in dgt and sit mutants under light conditions and inhibition of hypocotyl elongation in the epi mutant in the light and dark. On the other hand, GA promoted the hypocotyl elongation corroborating the same effect seen in pro. The brt mutant showed a reduced hypocotyl elongation in light and dark conditions, which contradicts the effect of exogenous cytokinin. The phytochromedeficient aurea (au) mutant was the only one to show an enhanced hypocotyl elongation in the dark compared to the wild type (MT). The combination between photomorphogenic and hormonal mutants (double mutants) showed additive (au epi, au Nr, au dgt e au sit), synergistic (au pro) and epistatic (au brt) interactions considering the anthocyanin accumulation and hypocotyl elongation. Synergistic interaction was observed in the elongation hypocotyl of the au dgt and au sit double mutants. These results indicate that phy and CK may share some signaling/metabolic pathways in the control of anthocyanin accumulation and hypocotyl elongation. On the other hand, our data do not support an interaction between phy and the hormones AUX, ET, ABA and GA in the control of hypocotyls elongation or anthocyanin accumulation

    Use of photomorphogenenic mutants in the study of the competence for in vitro regeneration in micro-tomato (lycopersicon esculentum cv micro-tom).

    No full text
    Paralelamente ao modelo Arabidopsis thaliana, o tomateiro (Lycopersicon esculentum) tem sido crescentemente utilizados em abordagens genéticas de questões fisiológicas. Uma das principais vantagens de Arabidopsis como "planta de laboratório" tem sido seu pequeno porte e ciclo de vida curto. Contudo, a cultivar Micro-Tom (MT) de tomateiro possui tamanho muito reduzido (8 cm) e pode produzir até 5 gerações por ano. Mutantes fotomorfogenéticos em tomateiro deficientes na síntese do cromóforo do fitocromo (au), mutantes deficientes na síntese das apoproteínas PHYA e PHYB1 (fri e tri, respectivamente) e mutantes superexpressando o fitocromo (hp, atv e Ip) constituem-se em um modelo para estudos da fotomorfogênese. No que se refere à capacidade de regeneração in vitro como uma resposta fotomorfogenética, poucos trabalhos têm sido realizados. O presente trabalho teve como objetivo transferir as mutações au, fri, tri, hp, Ip e atv, bem como o locus de regeneração (Rg1) da cultivar MsK, para a cultivar Micro-Tom. As linhagens obtidas foram utilizadas para verificar o efeito da fotomorfogênese na competência para regeneração in vitro. Para tanto, foram realizados tratamentos com luz branca, vermelho (V) e vermelho-extremo (VE) em explantes radiculares, caulinares e foliares do genótipo micro-MsK em meio MS mais 5mM de BAP e tratamentos com luz branca em explantes radiculares, caulinares e foliares de micro-mutantes fotomorfogenéticos também em meio MS mais 5mM de BAP. Para todos os tratamentos utilizou-se a cultivar MT como controle. Sob V, as raízes de micro-MsK apresentaram-se diferenciadas, enquanto sob VE não ocorreu diferenciação. O maior número de gemas formadas tanto para caule quanto para folhas de micro-MsK ocorreu sob V, enquanto sob VE foi observado um decréscimo na formação de gemas. A partir destes resultados sugere-se que a forma ativa do fitocromo, induzida pelo V, interage com o Rg1 na aquisição de competência para regeneração. Nos tratamentos com luz branca, raízes de micro-MsK e de mutantes micro-hp, micro-atv e micro-Ip apresentaram-se diferenciadas, enquanto não houve diferenciação para o mutante micro-au ou para o controle MT. O número de gemas formadas alcançou maiores valores para folhas de micro-hp e micro-Ip e a para caules de micro-atv. Apenas um número muito reduzido de gemas foi formado a partir de folhas de micro-au. Com base na alta competência para regeneração de micro-MsK e de mutantes que superexpressam o fitocromo, sugere-se que o fitocromo promove, em uma via de sinalização, a indução de fatores de regeneração (Rg1). Alternativamente, o locus Rg1 poderia promover a alta capacidade regenerativa tornando os explantes mais competentes ao efeito da superexpressão do fitocromo, o qual poderia induzir outros fatores de regeneração.Parallel to Arabidopsis thaliana model, the tomato (Lycopersicon esculentum) has been increasingly used as a genetic approach to address physiological questions. One of the main advantages of Arabidopsis as a "laboratory plant" has been its small size and short life cycle. However, the tomato cultivar Micro-Tom (MT) possesses reduced size (8 cm) and can produce up to 5 generations per year. Tomato photomorphogenic mutants deficient for the synthesis of phytochrome chromophore (au) or the apoprotein PHYA and PHYB1 (fri and tri, respectively), as well as mutants superexpressing phytochrome (hp, atv and Ip) consist on a model to study photomorphogenesis. Concerning the in vitro regeneration capacity as a photomorphogenic response, fewer works have been carried through. The current work aimed at transfering the mutations au, fri, tri, hp, Ip and atv, as well as the regeneration locus (Rg1) of cv MsK to the cv Micro-Tom (MT). The genotypes obtained were used to verify the effect of photomorphogenesis on the competence for in vitro regeneration. Root, stem and leaf explants from MT and Micro-MsK were incubated in MS plus 5mM BAP under white, red (R) and far-red (FR) light. Root, stem and leaf explants from MT and photomorphogenic micro-mutants were incubated in MS plus 5mM BAP under white light. Under R, roots of micro-MsK were presented differentiation, while under FR the differentiation did not occur. Under R, stem explants from micro-MsK formed more shoots than did leaf explants, while under FR was observed a decrease in shoot formation for all types of explants. These results suggest that the active form of phytochrome, induced by R, interacts with the Rg1 in the acquisition of competence for regeneration. In the treatments with white light, roots of micro-MsK and of mutants micro-hp, micro-atv and micro-Ip presented differentiation, while no differentiation was observed for the mutant micron-au or control MT. The number of shoots formed reached the highest values for leaf explants of micro-hp and micro-Ip and for stem explants of micron -atv. Only a low number of shoots was formed from micro-au leaf explants. On the basis of the high competence for regeneration of micro-MsK and mutants that super express phytochrome, it is suggested that the phytochrome promotes, in a signaling pathway, the induction of regeneration factors ( Rg1 ). Alternatively, the Rg1 locus may turn the explant most competent to respond to phytochrome, which could induces others regeneration factors

    Seed priming with sodium nitroprusside attenuates the effects of water deficit on soybean seedlings

    Get PDF
    Considering that water deficit is one of the main environmental factors responsible for low soybean yield and that nitric oxide (NO) has been shown to be a fundamental part of plant defense signaling during stress, the aim of the present study was to evaluate the effect of seed priming with nitric oxide on the induction of water deficit tolerance during the initial development of soybean. Thus, seeds were treated with 0 (water only), 50, 100 or 250 μmol.L-1 sodium nitroprusside for 6 hours. Additionally, untreated seeds were used. After drying, the seeds were placed in containers filled with a commercial substrate mixture and vermiculite and irrigated to 100% and 50% field capacity. Biometric and biochemical evaluations (pigment and proline contents) were performed after 14 days. It was concluded that pretreatment of soybean seeds with 50 to 250 μmol.L-1 SNP attenuated the effects of water deficit on stem growth, leaf area, and shoot dry matter and induced carotenoid biosynthesis. The accumulation of proline in the leaves was pronounced in the treatments with 100 and 250 μmol.L-1 SNP, while 100 μmol.L-1 SNP induced proline accumulation in the roots

    Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro¿Tom

    No full text
    [EN] The objectives were to verify the effects of the lack of cytokinins (CKs), comparing tomato cv. Micro-Tom (MT, wild type) to MT CKX2 (transgenic with less CKs) fed with nitrate (NO3-) and ammonium (NH4+), in the presence and absence of silicon (Si); verify if the attenuation of NH4+ toxicity by Si depends on the increase of CKs in MT; and verify if 6-benzyladenine (6-BA) attenuates NH4+ toxicity in MT. Three experiments were performed with treatments via nutrient solution. First, MT and MT CKX2 were grown with NO3- or NH4+ (5.9 mmol L- 1), in the absence and presence of Si (1.28 mmol L- 1). Second, MT was grown with NO3- or NH4+ (5.9 mmol L- 1), in the absence and presence of Si (1.28 mmol L- 1). Third, MT was grown with NO3- or NH4+ (5.9 mmol L- 1) and 6-BA (from 1e(-10) to 1e(-6) mol L-1) associated with NH4+. The MT and MT CKX2 had a decrease of 18% and 48% in the shoot dry weight, respectively, when fed with NH4+, compared to NO3-. Si attenuated NH4+ toxicity in MT, but not in MT CKX2. This attenuation in MT was accompanied by a decrease in trans-zeatin (tZ) content in the roots and increase in the shoots. 6-BA did not improve the shoot growth of MT fed with NH4+. In conclusion, the alleviation of NH4+ toxicity by Si was dependent on the increase in tZ content in shoots. In CK-deficient plants, Si did not alleviate NH4+ toxicity, and 6-BA did not alleviate NH4+ toxicity in MT shoots.This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001.Ferreira Barreto, R.; De Mello Prado, R.; Barbosa Lucio, JC.; Lopez Diaz, I.; Carrera, E.; Falleiros Carvalho, R. (2022). Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro-Tom. Journal of Plant Growth Regulation. 41(1):417-428. https://doi.org/10.1007/s00344-021-10314-541742841

    Compostos fenólicos e capacidade antioxidante em frutos de tomateiros mutantes fotomorfogenéticos

    No full text
    Phenolic compounds and antioxidant capacity are defense mechanisms of plants against the oxidative stress damage. Phenolic compounds are synthesized through the phenylpropanoid pathway, where the enzyme phenylalanine-ammonia-lyase plays a key role and it is influenced by light and photoreceptors such as phytochromes. The present research aims to evaluate the phenolic compounds content and antioxidant capacity of the wild Micro-Tom (MT) cultivar tomato fruits and its photomorphogenic mutant tomato plants high pigment 1 (hp1), super responsive to events mediated by light, and aurea (au), quantitative phytochrome deficient. Twenty mature fruits of each genotype (MT, hp1, au) were used in triplicate for analyses. To quantify the total phenolic compounds the Folin-Ciocalteu method was used and the antioxidant capacity was analyzed by Ferric Reducing Antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. The hp1 mutant presented the highest total phenolic compounds content and higher antioxidant capacity than wild cultivar (MT) and au mutant, which did not differ significantly from MT cultivar.Compostos fenólicos e capacidade antioxidante são mecanismos de defesa das plantas aos danos do estresse oxidativo. Os compostos fenólicos são sintetizados pela via dos fenilpropanoides, cuja enzima chave, fenilalanina amônia liase, é influenciada pela luz e ação de fotorreceptores, como o fitocromo. O objetivo do presente trabalho é avaliar a concentração de compostos fenólicos e a capacidade antioxidante de frutos de microtomateiro selvagem, cultivar Micro-Tom (MT), e seus mutantes fotomorfogenéticos high pigment 1 (hp1), super-responsivo a eventos mediados por luz e aurea (au), deficiente quantitativo em fitocromos. Vinte frutos maduros de cada genótipo (MT, hp1 e au) foram utilizados para as análises, realizadas em triplicata. Para quantificação dos compostos fenólicos totais, foi utilizado o método de Folin-Ciocalteu e a capacidade antioxidante foi realizada pelos métodos Ferric Reducing Antioxidant Power (FRAP) e 2,2-diphenyl-1-picrylhydrazyl (DPPH). Os frutos do mutante hp1 apresentaram maiores conteúdos de compostos fenólicos totais e também maior capacidade antioxidante em relação à cultivar selvagem (MT) e ao mutante au, o qual não diferiu significativamente da cultivar MT

    Realities of Entrepreneurship in the European Union and Other World Countries: Are We Prepared for the New Paradigm After the Pandemic?

    No full text
    The objectives of this research are to evaluate the entrepreneurship attitudes and skills in the European Union and other world countries context before COVID-19 and discuss perspectives for the future. The information available in the Eurobarometers for the entrepreneurship that was worked through quantitative approaches was assessed. The results show that there is a long way to go in the European Union to achieve the desirable levels of personal, profession, and business entrepreneurship. In fact, the perceptions of the European citizen about the entrepreneurship changed in the last years, in consequence, for example, of technological developments, but still fall short of other countries as, for example, in some aspects the United States. In any cases, the skill improvements verified in Europe and the levels of innovation achieved are good news for the new challenges that will arrive soon.info:eu-repo/semantics/publishedVersio
    corecore