13 research outputs found

    Coupling Multi-Angle Light Scattering to Reverse-Phase Ultra-High-Pressure Chromatography (RP-UPLC-MALS) for the characterization monoclonal antibodies

    Get PDF
    Multi-angle light scattering coupled with size-exclusion chromatography (SEC-MALS) is a standard approach for protein characterization. Recently MALS detection has been coupled with ion-exchange chromatography (IEX) which demonstrated the feasibility and high value of MALS in combination with non-sized-based fractionation methods. In this study we coupled reverse-phase ultra-high pressure liquid chromatography (RP-UPLC) with a low-dispersion MALS detector for the characterization of intact monoclonal antibody (mAbs) and their fragments. We confirmed a constant refractive index increment value for mAbs in RP gradients, in good agreement with the values in literature for other classes of proteins. We showed that the impurities eluting from a RP column can often be related to aggregated species and we confirmed that in most cases those oligomers are present also in SEC-MALS. Yet, in few cases small aggregates fractions in RP-UPLC are an artifact. In fact, proteins presenting thermal and physical stability not suitable for the harsh condition applied during the RP separation of mAbs (i.e. organic solvents at high temperature) can aggregate. Further, we applied RP-UPLC-MALS during a long term stability studies. The different principle of separation used in RP-UPLC-MALS provides an additional critical level of protein characterization compared to SEC-MALS and IEX-MALS

    A New Approach to Study the Physical Stability of Monoclonal Antibody Formulations Dilution From a Denaturant

    Get PDF
    The early-stage assessment of the physical stability of new monoclonal antibodies in different formulations is often based on high-throughput techniques that suffer from various drawbacks. Accordingly, new approaches that facilitate the protein formulation development can be of high value to the industry. In this study, a dynamic light scattering plate reader is used to measure the aggregation (by means of the increase in the hydrodynamic radius [Rh]) of monoclonal antibody samples that were subject to incubation and subsequent dilution from different concentrations of a denaturing agent, that is, guanidine hydrochloride. The increase in the Rh of the protein samples is dependent not only on the denaturant concentration used but also on the buffer in which the incubation/dilution was performed. We also compare the aggregation after dilution from a denaturant with other high-throughput stability-indicating methods and find good agreement between the techniques. The proposed approach to probe the physical stability of monoclonal antibodies in different formulation conditions offers a unique combination of features—it is isothermal, probes both the resistance to denaturant-induced unfolding and the colloidal protein stability, it is entirely label-free, does not rely on complex data evaluation, and requires very short instrument measurement time on standard equipment

    Getting Closer to Absolute Molar Masses of Technical Lignins

    Get PDF
    Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488nm, 633nm, 658nm, or 690nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.Peer reviewe

    The development of therapeutic proteins can be hindered by poor decision-making strategies in the early stage

    Get PDF
    In this study we address two major issues related to the current development process of therapeutic proteins and their characterization. First, due to limited samples amounts, the selection of lead molecules in the early stages is often based on the results from a limited physicochemical characterization. The latter can be based on measurements of only 2-3 parameters, e.g. protein melting temperature, protein aggregation temperature, and is usually performed in only one buffer, e.g. PBS. The hypothesis we present is that such approach can lead to the rejection of lead candidates that can still be manufacturable and can move on to clinical trials. The second matter we address are the often-reported correlations between protein physicochemical parameters in the literature. We propose that such correlations can be found only in a small sample population, e.g. one protein in different solution conditions or different proteins from the same class. However, we expect that such correlations would not be valid in a large population, including various protein structures and solution conditions. In order to address the above-mentioned issues, we created the PIPPI consortium (http://www.pippi.kemi.dtu.dk) and applied systematic approach to map the physicochemical properties of a wide range of proteins and extensively study their stability as a function of the solution conditions. We show that promising therapeutic protein lead candidate can appear as non-manufacturable when only limited physicochemical characterization is performed, e.g. a few methods are used and only a few solution conditions are tested. Therefore, the rejection rate during early-stage development can be improved by more thorough physicochemical characterization. Moreover, only weak linear correlations between biophysical properties of proteins are observed in a large populations. This suggests that the often-reported correlations between parameters describing the protein stability are not representative of a global population. Understanding the connections between various physiochemical parameters would require a systematic database which is currently in development by the PIPPI consortium

    Self-Association of Apo A‑1 Studied with Dynamic and Static Light Scattering

    No full text
    Static and dynamic light scattering were employed to determine simultaneously the average relative molecular mass, <i>M</i><sub>r</sub>, and the average hydrodynamic radius, <i>R</i><sub>h</sub>, of protein molecules. The new method was applied to the association–dissociation equilibrium of apolipoprotein A-1 (Apo A-1) and its thermal unfolding. As a control, lysozyme was measured as a nonassociating protein. Apo A-1 forms oligomers as a function of concentration and temperature, and the equilibrium can be described by a cooperative association model, consisting of a nucleation step and a growth step. At concentrations of 1 and 2.7 mg/mL, the Apo A-1 solution contained mainly monomers and octamers, with intermediates occurring at very low concentrations. Oligomer formation was maximal at 22 °C and was characterized by a temperature-dependent association constant. The cooperative association model allows the quantitative analysis of both the average relative molecular mass, <i>M</i><sub>r</sub>, and the average hydrodynamic radius, <i>R</i><sub>h</sub>, with the same set of model parameters which, in turn, are also applicable to analytical ultracentrifugation experiments. The light scattering experiments were reversible as long as the Apo A-1 solution was not heated above 60 °C

    Application of interpretable artificial neural networks to early monoclonal antibodies development

    Get PDF
    The development of a new protein drug typically starts with the design, expression and biophysical characterization of many different protein constructs. The initially high number of constructs is radically reduced to a few candidates that exhibit the desired biological and physicochemical properties. This process of protein expression and characterization to find the most promising molecules is both expensive and time-consuming. Consequently, many companies adopt and implement philosophies, e.g. platforms for protein expression and formulation, computational approaches, machine learning, to save resources and facilitate protein drug development. Inspired by this, we propose the use of interpretable artificial neuronal networks (ANNs) to predict biophysical properties of therapeutic monoclonal antibodies i.e. melting temperature Tm, aggregation onset temperature Tagg, interaction parameter kD as a function of pH and salt concentration from the amino acid composition. Our ANNs were trained with typical early-stage screening datasets achieving high prediction accuracy. By only using the amino acid composition, we could keep the ANNs simple which allows for high general applicability, robustness and interpretability. Finally, we propose a novel “knowledge transfer” approach, which can be readily applied due to the simple algorithm design, to understand how our ANNs come to their conclusions

    Towards an improved prediction of concentrated antibody solution viscosity using the Huggins coefficient.

    No full text
    From PubMed via Jisc Publications RouterHistory: received 2021-06-04, revised 2021-07-28, accepted 2021-08-29Publication status: aheadofprintThe viscosity of a monoclonal antibody solution must be monitored and controlled as it can adversely affect product processing, packaging and administration. Engineering low viscosity mAb formulations is challenging as prohibitive amounts of material are required for concentrated solution analysis, and it is difficult to predict viscosity from parameters obtained through low-volume, high-throughput measurements such as the interaction parameter, k , and the second osmotic virial coefficient, B . As a measure encompassing the effect of intermolecular interactions on dilute solution viscosity, the Huggins coefficient, k , is a promising candidate as a parameter measureable at low concentrations, but indicative of concentrated solution viscosity. In this study, a differential viscometry technique is developed to measure the intrinsic viscosity, [η], and the Huggins coefficient, k , of protein solutions. To understand the effect of colloidal protein-protein interactions on the viscosity of concentrated protein formulations, the viscometric parameters are compared to k and B of two mAbs, tuning the contributions of repulsive and attractive forces to the net protein-protein interaction by adjusting solution pH and ionic strength. We find a strong correlation between the concentrated protein solution viscosity and the k but this was not observed for the k or the b , which have been previously used as indicators of high concentration viscosity. Trends observed in [η] and k values as a function of pH and ionic strength are rationalised in terms of protein-protein interactions. [Abstract copyright: Copyright © 2021. Published by Elsevier Inc.

    Small angle X-ray scattering and molecular dynamic simulations provide molecular insight for stability of recombinant human transferrin

    No full text
    Transferrin is an attractive candidate for drug delivery due to its ability to cross the blood brain barrier. However, in order to be able to use it for therapeutic purposes, it is important to investigate how its stability depends on different formulation conditions. Combining high-throughput thermal and chemical denaturation studies with small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, it was possible to connect the stability of transferrin with its conformational changes. Lowering pH induces opening of the transferrin N-lobe, which results in a negative effect on the stability. Presence of NaCl or arginine at low pH enhances the opening and has a negative impact on the overall protein stability

    Self-Interactions of Two Monoclonal Antibodies : Small-Angle X-ray Scattering, Light Scattering, and Coarse-Grained Modeling

    No full text
    Using light scattering (LS), small-angle X-ray scattering (SAXS), and coarse-grained Monte Carlo (MC) simulations, we studied the self-interactions of two monoclonal antibodies (mAbs), PPI03 and PPI13. With LS measurements, we obtained the osmotic second virial coefficient, B22, and the molecular weight, Mw, of the two mAbs, while with SAXS measurements, we studied the mAbs' self-interaction behavior in the high protein concentration regime up to 125 g/L. Through SAXS-derived coarse-grained representations of the mAbs, we performed MC simulations with either a one-protein or a two-protein model to predict B22. By comparing simulation and experimental results, we validated our models and obtained insights into the mAbs' self-interaction properties, highlighting the role of both ion binding and charged patches on the mAb surfaces. Our models provide useful information about mAbs' self-interaction properties and can assist the screening of conditions driving to colloidal stability
    corecore