44 research outputs found

    Micro-dynamics of ice

    Get PDF
    No abstract available

    Modelling the influence of air on the deformation and recrystallisation mechanisms in polar firn and ice

    Get PDF
    Within their upper approximately thousand meters, ice sheets on Earth contain a significant amount of air and air hydrates below. In the permeable firn, this air is still exchanging with the atmosphere and is under atmospheric pressure, whereas the air bubbles are entrapped at the firn-ice transition 60 – 120 m depth. As recent research showed, the presence of air bubbles can significantly influence microdynamical processes such as grain growth and grain boundary migration (Azuma et al., 2012, Roessiger et al., 2014). Understanding the dominant deformation mechanisms has essential implications on paleo-atmosphere research and allows more realistic modelling of ice sheet dynamics. Therefore, numerical models were set up and performed focussing on the implications of the presence of bubbles on recrystallisation and the mechanical properties of ice with air inclusions. The 2D numerical microstructural modelling platform Elle was coupled to the full-field crystal plasticity code of Lebensohn (2001), which is using a Fast Fourier Transform (FFT) following the approach by Griera et al. (2013). Taking into account the mechanical anisotropy of ice, FFT calculates the viscoplastic response of polycrystalline and polyphase materials that deform by dislocation glide, predicts lattice re-orientation and using the local gradient of the strain-rate field, dislocation densities are calculated. FFT was used for the simulation of dynamic recrystallization of pure ice by Montagnat et al. (2013). Polyphase grain boundary migration driven by surface energy and internal strain energy reduction was incorporated in the code and now also enables us to model deformation of ice with air bubbles. The approach is based on the methodology of Becker et al. (2008) and Roessiger et al. (2014). During Deformation, spherical to elliptical bubble shapes are only maintained, when surface energy based recrystallisation is activated, whereas they quickly collapse at low strains in the absence of recrystallisation. The presence of bubbles leads to increased localization of stress, strain and dislocation densities, a reduction of the bulk strength of the bubbly ice is observed. Furthermore, strain-induced grain boundary migration already occuring in the uppermost levels of ice sheets (Kipfstuhl et al. 2009, Weikusat et al. 2009) is confirmed by our modelling. References Azuma, N., Miyakoshi, T., Yokoyama, S., Takata, M., 2012. Journal of Structural Geology 42, 184- 193. Becker, J.K., Bons, P.D., Jessell, M.W., 2008. Computers & Geosciences 34, 201-212. Bons, P.D., Koehn, D., Jessell, M.W. (Eds.), 2008. Microdynamic Simulation. Springer, Berlin. Kipfstuhl, S., Faria, S.H., Azuma, N., Freitag, J., Hamann, I., Kaufmann, P., Miller, H., Weiler, K., Wilhelms, F., 2009. Journal of Geophysical Research 114, B05204. Lebensohn, R.A., 2001. Acta Mater 49 (14), 2723e2737. Montagnat, M., Castelnau, O., Bons, P.D., Faria, S.H., Gagliardini, O., Gillet-Chaulet, F., Grennerat, F., Griera, A., Lebensohn, R.A., Moulinec, H., Roessiger, J., Suquet, P., 2014. Journal of Structural Geology 61, 78-108 RĂ¶ĂŸiger, J., Bons, P.D., Faria, S.H., 2014. Journal of Structural Geology 61, 123-132 Weikusat, I., Kipfstuhl, S., Faria, S.H., Azuma, N., Miyamoto, A., 2009. Journal of Glaciology 55, 461-472

    The effect of dynamic recrystallisation on the rheology and microstructures of partially molten rocks

    Get PDF
    This work was founded by the joint project “Rheology of the continental crust in collision”, funded by the Procope scheme of PHC Egide in France and by the DAAD PPP scheme in Germany. M-GL acknowledges the support of the Juan de la Cierva programme of the Government of Spain’s Ministry for Science, Innovation and Universities. EGR acknowledges the support of the Beatriu de Pinós programme of the Government of Catalonia's Secretariat for Universities and Research of the Department of Economy and Knowledge (2016 BP 00208). This work benefited from discussions with Pi L. Jolivet and E. Burov within the ERC project RHEOLITH. We thank Elisabetta Mariani and Marcin Dabrowski for their helpful comments, together with the editorial guidance of Dave Healy and Bill Dunne.Peer reviewedPostprin

    Strain localization and dynamic recrystallization in the ice–air aggregate: a numerical study

    Get PDF
    We performed numerical simulations on the microdynamics of ice with air inclusions as a second phase. Our aim was to investigate the rheological effects of air inclusions and explain the onset of dynamic recrystallization in the permeable firn. The simulations employ a full-field theory crystal plasticity code coupled to codes simulating dynamic recrystallization processes and predict time-resolved microstructure evolution in terms of lattice orientations, strain distribution, grain sizes and grain-boundary network. Results show heterogeneous deformation throughout the simulations and indicate the importance of strain localization controlled by air inclusions. This strain localization gives rise to locally increased energies that drive dynamic recrystallization and induce heterogeneous microstructures that are coherent with natural firn microstructures from EPICA Dronning Maud Land ice coring site in Antarctica. We conclude that although overall strains and stresses in firn are low, strain localization associated with locally increased strain energies can explain the occurrence of dynamic recrystallization

    Dynamic recrystallization during deformation of polycrystalline ice: insights from numerical simulations

    Get PDF
    The flow of glaciers and polar ice sheets is controlled by the highly anisotropic rheology of ice crystals that have hexagonal symmetry (ice lh). To improve our knowledge of ice sheet dynamics, it is necessary to understand how dynamic recrystallization (DRX) controls ice microstructures and rheology at different boundary conditions that range from pure shear flattening at the top to simple shear near the base of the sheets. We present a series of two-dimensional numerical simulations that couple ice deformation with DRX of various intensities, paying special attention to the effect of boundary conditions. The simulations show how similar orientations of c-axis maxima with respect to the finite deformation direction develop regardless of the amount of DRX and applied boundary conditions. In pure shear this direction is parallel to the maximum compressional stress, while it rotates towards the shear direction in simple shear. This leads to strain hardening and increased activity of non-basal slip systems in pure shear and to strain softening in simple shear. Therefore, it is expected that ice is effectively weaker in the lower parts of the ice sheets than in the upper parts. Strain-rate localization occurs in all simulations, especially in simple shear cases. Recrystallization suppresses localization, which necessitates the activation of hard, non-basal slip systems.This article is part of the themed issue {\textquoteleft}Microdynamics of ice{\textquoteright}

    Microdynamical simulations of polyphase deformation and recrystallisation processes in polar ice and firn

    Get PDF
    The Antarctic and Greenland ice sheets store a significant amount of air within their upper, approximately thousand meters. Research shows how the presence of air inclusions can influence the microdynamical processes that affect the flow of ice (Azuma et al., 2012, Roessiger et al., 2014). The microdynamics of pure ice were successfully modelled by e.g. Montagnat et al. (2014) or Llorens et al. (2015), but studies taking into account second phases are scarce. Therefore, polyphase modelling was performed to focus on the implications of bubbles on recrystallisation and deformation. The full-field theory crystal plasticity code (FFT) of Lebensohn (2001), was coupled to the 2D multi-process modelling platform Elle (Bons et al., 2008), following the approach by Griera et al. (2013). FFT calculates the viscoplastic response of polycrystalline materials deforming by dislocation glide, taking into account mechanical anisotropy. Our models further incorporate surface- and strain-energy driven grain boundary migration and intracrystalline recovery. Sequential operation of each process for small time steps enables multi-process modelling of deformation and concurrent recrystallisation. Results show that air inclusions lead to increased strain localization and hence locally enhanced dynamic recrystallisation. This is in accordance with Faria et al. (2014), who theoretically predicted such localization, based on firn data from the EPICA Dronning Maud Land (EDML) deep ice core. Our results confirm that strain-induced grain boundary migration already occurs in the uppermost levels of ice sheets, as observed by Kipfstuhl et al. (2009) and Weikusat et al. (2009) in the EDML core. References Azuma, N., et al. (2012) Journal of Structural Geology, 42, 184-193 Bons, P.D., et al. (2008) Lecture Notes in Earth Sciences, 106 Faria, S.H., et al. (2014) Journal of Structural Geology, 61, 21-49 Griera, A., et al. (2013) Tectonophysics, 587, 4-29 Kipfstuhl, S., et al. (2009) Journal of Geophysical Research, 114, B05204 Lebensohn, R.A. (2001) Acta Materialia, 49, 2723-2737 Llorens, M.G., et al. (2015) submitted to Journal of Glaciology Montagnat, M., et al. (2014) Journal of Structural Geology, 61, 78-108 Roessiger, J., et al. (2014) Journal of Structural Geology, 61, 123-132 Weikusat, I., et al. (2009) Journal of Glaciology, 55, 461-47

    Optimizing silviculture in mixed uneven-aged forests to increase the recruitment of browse-sensitive tree species without intervening in ungulate population

    No full text
    An increase in ungulate abundance in Europe in recent decades has raised concerns for the survival of browse-sensitive tree species in its early life history stages. A possible strategy for mitigating the browsing-induced mortality of natural regeneration is to optimize silviculture. We used matrix population models parameterized for three types of Abies alba - Picea abies - Fagus sylvatica forests (3,183 permanent sample plots from three study areas in Slovenia, 39,717 ha), and a non-linear optimization to: (i) schedule optimal timing and intensity of logging in the next 100 years to increase the recruitment of Abies alba without intervening in the population of ungulates; and (ii) examine the influence of different natural recruitment rates on the potential for mitigating recruitment failure through silviculture optimization. The optimal management has required species-, growth- and diameter-specific logging, including intensive logging of large-diameter Abies alba in the first decades and strict conservation of recruits. The potential for mitigating recruitment failure through optimization increased progressively with natural recruitment rate and progressively at a decreasing rate with time. Optimizing silviculture was effective for maintaining Abies alba in stands exposed to low or moderate browsing pressures. Faced with chronic ungulate herbivory, forest managers should primarily focus on the reduction of herbivory and to a lesser extent on optimizing silviculture
    corecore