112 research outputs found

    Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish

    Get PDF
    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km^3 lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore

    Historic drought puts the breaks on earthflows in Northern California

    Get PDF
    California's ongoing, unprecedented drought is having profound impacts on the state's resources. Here we assess its impact on 98 deep-seated, slow-moving landslides in Northern California. We used aerial photograph analysis, satellite interferometry, and satellite pixel tracking to measure earthflow velocities spanning 1944–2015 and compared these trends with the Palmer Drought Severity Index, a proxy for soil moisture and pore pressure that governs landslide motion. We find that earthflow velocities reached a historical low in the 2012–2015 drought, but that their deceleration began at the turn of the century in response to a longer-term moisture deficit. Our analysis implies depth-dependent sensitivity of earthflows to climate forcing, with thicker earthflows reflecting longer-term climate trends and thinner earthflows exhibiting less systematic velocity variations. These findings have implications for mechanical-hydrologic interactions that link landslide movement with climate change as well as sediment delivery in the region

    Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy

    Get PDF
    The transient response of bedrock rivers to a drop in base level can be used to discriminate between competing fluvial erosion models. However, some recent studies of bedrock erosion conclude that transient river long profiles can be approximately characterized by a transport‐limited erosion model, while other authors suggest that a detachment‐limited model best explains their field data. The difference is thought to be due to the relative volume of sediment being fluxed through the fluvial system. Using a pragmatic approach, we address this debate by testing the ability of end‐member fluvial erosion models to reproduce the well‐documented evolution of three catchments in the central Apennines (Italy) which have been perturbed to various extents by an independently constrained increase in relative uplift rate. The transport‐limited model is unable to account for the catchments’response to the increase in uplift rate, consistent with the observed low rates of sediment supply to the channels. Instead, a detachment‐limited model with a threshold corresponding to the field‐derived median grain size of the sediment plus a slope‐dependent channel width satisfactorily reproduces the overall convex long profiles along the studied rivers. Importantly, we find that the prefactor in the hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster the higher the uplift rate, consistent with field observations. We conclude that a slope‐ dependent channel width and an entrainment/erosion threshold are necessary ingredients when modeling landscape evolution or mapping the distribution of fluvial erosion rates in areas where the rate of sediment supply to channels is low

    A simple and efficient GIS tool for volume calculations of submarine landslides

    Get PDF
    A numeric tool is presented for calculating volumes of topographic voids such as slump scars of landslides, canyons or craters (negative/concave morphology), or alternatively, bumps and hills (positive/convex morphology) by means of digital elevation models embedded within a geographical information system (GIS). In this study, it has been used to calculate landslide volumes. The basic idea is that a (singular) event (landslide, meteorite impact, volcanic eruption) has disturbed an intact surface such that it is still possible to distinguish between the former (undisturbed) landscape and the disturbance (crater, slide scar, debris avalanche). In such cases, it is possible to reconstruct the paleo-surface and to calculate the volume difference between both surfaces, thereby approximating the volume gain or loss caused by the event. I tested the approach using synthetically generated land surfaces that were created on the basis of Shuttle Radar Topography Mission data. Also, I show the application to two real cases, (1) the calculation of the volume of the Masaya Slide, a submarine landslide on the Pacific continental slope of Nicaragua, and (2) the calculation of the void of a segment of the Fish River Canyon, Namibia. The tool is provided as a script file for the free GIS GRASS. It performs with little effort, and offers a range of interpolation parameters. Testing with different sets of interpolation parameters results in a small range of uncertainty. This tool should prove useful in surface studies not exclusively on earth

    Constraining climatic controls on hillslope dynamics using a coupled model for the transport of soil and tracers : application to loess-mantled hillslopes, South Island, New Zealand

    Get PDF
    Landscapes reflect a legacy of tectonic and climatic forcing as modulated by surface processes. Because the morphologic characteristics of landscapes often do not allow us to uniquely define the relative roles of tectonic deformation and climate, additional constraints are required to interpret and predict landscape dynamics. Here we describe a coupled model for the transport of soil and tracer particles at the hillslope scale. To illustrate the utility of this methodology, we modeled the evolution of two synthetic hillslopes with identical initial and boundary conditions but different histories of climate-induced changes in the efficiency of soil transport. While one hillslope experienced an initial phase of rapid transport followed by a period of retarded transport, the other hillslope experienced the opposite sequence. Both model hillslopes contain a subsurface layer of tracer particles that becomes exhumed and incorporated into the soil due to transport and mixing processes. Whereas the morphology of the two model hillslopes cannot be easily distinguished at the simulation conclusion, the spatial distribution of tracer particles along the slope is distinctive for the two cases. We applied the coupled model to our study site along the Charwell River, South Island, New Zealand, where tephra deposits within loess-dominated soils have been exhumed and incorporated into an upper layer of bioturbated and mobile soil. We reconstructed the late Pleistocene hillslope geometry using soil stratigraphic data gathered along the study transect. Because bioturbation appears to be the predominant transport mechanism, the efficiency of soil transport likely varies with time, reflecting the influence of climate-related changes in the dominant floral or faunal community. The modeled evolution of hillslope form and tephra concentration along the study transect is consistent with observations obtained from topographic surveys and laboratory analysis of tephra concentrations in continuous-core soil samples. Low transport rates are apparently associated with grass/shrub-dominated slopes during the late Pleistocene, whereas forest colonization during the Holocene increased flux rates, transforming flat, locally incised slopes into broadly convex ones. Our results attest to the utility of coupled models for tasks such as deciphering landscape history and predicting the downslope flux of soil organic carbon

    Creeping earth could hold secret to deadly landslides

    No full text
    • 

    corecore