3 research outputs found

    Phenology of the avian spring migratory passage in Europe and North America : Asymmetric advancement in time and increase in duration

    Get PDF
    Climate change has been shown to shift the seasonal timing (i.e. phenology) and distribution of species. The phenological effects of climate change on living organisms have often been tested using first occurrence dates, which may be uninformative and biased. More rarely investigated is how different phases of a phenological sequence (e.g. beginning, central tendency and end) or its duration have changed over time. This type of analysis requires continuous observation throughout the phenological event over multiple years, and such data sets are rare. In this study we examined the impact of temperature on long-term change of passage timing and duration of the spring migration period in birds, and which species' traits explain species-specific variation. Data used covered 195 species from 21 European and Canadian bird observatories from which systematic daily sampling protocols were available. Migration dates were negatively associated with early spring temperature and timings had in general advanced in 57 years. Short-distance migrants advanced the beginning of their migration more than long-distance migrants when corrected for phylogenic relatedness, but such a difference was not found in other phases of migration. The advancement of migration has generally been greater for the beginning and median phases of migration relative to the end, leading to extended spring migration seasons. Duration of the migration season increased with increasing temperature. Phenological changes have also been less noticeable in Canada even when corrected for rate of change in temperature. To visualize long-term changes in phenology, we constructed the first multi-species spring migration phenology indicator to describe general changes in median migration dates in the northern hemisphere. The indicator showed an average advancement of one week during five decades across the continents (period 1959-2015). The indicator is easy to update with new data and we therefore encourage future research to investigate whether the trend towards longer periods of occurrence or emergence in spring is also evident in other migratory populations. Such phenological changes may influence detectability in monitoring schemes, and may have broader implications on population and community dynamics.Peer reviewe

    Multidimensional signals and analytic flexibility: Estimating degrees of freedom in human speech analyses

    Get PDF
    Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis which can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling, but also from decisions regarding the quantification of the measured behavior. In the present study, we gave the same speech production data set to 46 teams of researchers and asked them to answer the same research question, resulting insubstantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further find little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system and calibrate their (un)certainty in their conclusions

    Characterizing bird migration phenology using data from standardized monitoring at bird observatories

    No full text
    Long-term data from standardized monitoring programmes at bird observatories are becoming increasingly available. These data are frequently used for detecting changes in the timing of bird migration that may relate to recent climate change. We present an overview of problematic issues in the analysis of these data, and review approaches to and methods for characterizing bird migration phenology and its change over time. Methods are illustrated and briefly compared using autumn data on garden warbler Sylvia borin from a standardized mist-netting programme at Lista bird observatory, southern Norway. Bird migration phenology is usually characterized rather coarsely using a small number of sample statistics such as mean, median and selected quantiles. We present 2 alternative approaches. Smoothing methods describe the within-season pattern in the data at an arbitrary level of detail, while fitting a parametric seasonal distribution curve offers a coarse description of migration phenology relatively robust to sampling effects. Various methods for analyzing linear trends in the timing of bird migration are reviewed and discussed. Exploratory studies using long-term data gathered at bird observatories can yield more detailed insight into the phenomenon of bird migration and how phenologies relate to climate. Methodological advances are needed, particularly in order to better characterize the shape of phenological distributions and separate between sampling effects and 'true' phenology
    corecore