85 research outputs found

    New energy geographies : a case study of yoga, meditation and healthfulness

    Get PDF
    Beginning with a routine day in the life of a practitioner of yoga and meditation and emphasising the importance of nurturing, maintaining and preventing the dissipation of diverse β€˜energies’, this paper explores the possibilities for geographical health studies which take seriously β€˜new energy geographies’. It is explained how this account is derived from in-depth fieldwork tracing how practitioners of yoga and meditation find times and spaces for these practices, often in the face of busy urban lifestyles. Attention is paid to the β€˜energy talk’ featuring heavily in how practitioners describe the benefits that they perceive themselves to derive from these practices, and to claims made about β€˜energies’ generated during the time-spaces of these practices which seemingly flow, usually with positive effects, into other domains of their lives. The paper then discusses the implications of this energy talk in the context of: (a) critically reviewing conventional approaches to studying β€˜energy geographies’; (b) identifying an alertness to the likes of β€˜affective energies’ surfacing in recent theoretically-attuned works of human geography (and cognate disciplines); and (c) exploring differing understandings of energy/energies extant in geographical studies of health and in step with the empirical research materials presented about yoga, meditation and healthfulness. While orientated towards explicitly geographical inquiries, the paper is intended as a statement of interest to the wider medical humanities

    Genomic Sequence Analysis of Granulovirus Isolated from the Tobacco Cutworm, Spodoptera litura

    Get PDF
    Background: Spodoptera litura is a noctuid moth that is considered an agricultural pest. The larvae feed on a wide range of plants and have been recorded on plants from 40 plant families (mostly dicotyledons). It is a major pest of many crops. To better understand Spodoptera litura granulovirus (SpliGV), the nucleotide sequence of the SpliGV DNA genome was determined and analyzed. Methodology/Principal Findings: The genome of the SpliGV was completely sequenced. The nucleotide sequence of the SpliGV genome was 124,121 bp long with 61.2 % A+T content and contained 133 putative open reading frames (ORFs) of 150 or more nucleotides. The 133 putative ORFs covered 86.3 % of the genome. Among these, 31 ORFs were conserved in most completely sequenced baculovirus genomes, 38 were granulovirus (GV)-specific, and 64 were present in some nucleopolyhedroviruses (NPVs) and/or GVs. We proved that 9 of the ORFs were SpliGV specific. Conclusions/Significance: The genome of SpliGV is 124,121 bp in size. One hundred thirty-three ORFs that putatively encode proteins of 50 or more amino acid residues with minimal overlap were determined. No chitinase or cathepsin genes, which are involved in the liquefaction of the infected host, were found in the SpliGV genome, explaining why SpliGVinfected insects do not degrade in a typical manner. The DNA photolyase gene was first found in the genus Granulovirus. When phylogenic relationships were analyzed, the SpliGV was most closely related to Trichoplusia ni granulovirus (TnGV

    Sandy coastlines under threat of erosion

    Get PDF
    Sandy beaches occupy more than one-third of the global coastline(1) and have high socioeconomic value related to recreation, tourism and ecosystem services(2). Beaches are the interface between land and ocean, providing coastal protection from marine storms and cyclones(3). However the presence of sandy beaches cannot be taken for granted, as they are under constant change, driven by meteorological(4,5), geological(6) and anthropogenic factors(1,7). A substantial proportion of the world's sandy coastline is already eroding(1,7), a situation that could be exacerbated by climate change(8,9). Here, we show that ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could result in the near extinction of almost half of the world's sandy beaches by the end of the century. Moderate GHG emission mitigation could prevent 40% of shoreline retreat. Projected shoreline dynamics are dominated by sea level rise for the majority of sandy beaches, but in certain regions the erosive trend is counteracted by accretive ambient shoreline changes; for example, in the Amazon, East and Southeast Asia and the north tropical Pacific. A substantial proportion of the threatened sandy shorelines are in densely populated areas, underlining the need for the design and implementation of effective adaptive measures. Erosion is a major problem facing sandy beaches that will probably worsen with climate change and sea-level rise. Half the world's beaches, many of which are in densely populated areas, could disappear by the end of the century under current trends; mitigation could lessen retreat by 40%.info:eu-repo/semantics/publishedVersio

    Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor

    Get PDF
    <div><p>Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.</p></div

    Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells)

    Get PDF
    In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described

    Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics

    No full text
    This paper aims to fundamentally assess the resilience of salt marsh-mudflat systems under sea level rise. We applied an open-source schematized 2D area model (Delft3D) that couples intertidal flow, wave-action, sediment transport, geomorphological development with a population dynamics approach including temporal and spatial growth of vegetation and bio-accumulation. Wave-action maintains a high sediment concentration on the mudflat while the tidal motion transports the sediments within the vegetated marsh areas during flood. The marsh-mudflat system attained dynamic equilibrium within 120 years. Sediment deposition and bio-accumulation within the marsh make the system initially resilient to sea level rise scenarios. However, after 50–60 years the marsh system starts to drown with vegetated-levees being the last surviving features. Biomass accumulation and sediment supply are critical determinants for the marsh drowning rate and survival. Our model methodology can be applied to assess the resilience of vegetated coast lines and combined engineering solutions for long-term sustainability
    • …
    corecore