343 research outputs found

    Effects of the neonatal intensive care environment on circadian health and development of preterm infants

    Get PDF
    The circadian system in mammals ensures adaptation to the light-dark cycle on Earth and imposes 24-h rhythmicity on metabolic, physiological and behavioral processes. The central circadian pacemaker is located in the brain and is entrained by environmental signals called Zeitgebers. From here, neural, humoral and systemic signals drive rhythms in peripheral clocks in nearly every mammalian tissue. During pregnancy, disruption of the complex interplay between the mother’s rhythmic signals and the fetal developing circadian system can lead to long-term health consequences in the offspring. When an infant is born very preterm, it loses the temporal signals received from the mother prematurely and becomes totally dependent on 24/7 care in the Neonatal Intensive Care Unit (NICU), where day/night rhythmicity is usually blurred. In this literature review, we provide an overview of the fetal and neonatal development of the circadian system, and short-term consequences of disruption of this process as occurs in the NICU environment. Moreover, we provide a theoretical and molecular framework of how this disruption could lead to later-life disease. Finally, we discuss studies that aim to improve health outcomes after preterm birth by studying the effects of enhancing rhythmicity in light and noise exposure.</p

    Family-based treatment of children with severe obesity in a public healthcare setting: Results from a randomized controlled trial

    Get PDF
    To compare the effectiveness of family-based behavioural social facilitation treatment (FBSFT) versus treatment as usual (TAU) in children with severe obesity. Parallel-design, nonblinded, randomized controlled trial conducted at a Norwegian obesity outpatient clinic. Children aged 6–18 years referred to the clinic between 2014 and 2018 were invited to participate. Participants were randomly allocated using sequentially numbered, opaqued, sealed envelopes. FBSFT (n = 59) entailed 17 sessions of structured cognitive behavioural treatment, TAU (n = 55) entailed standard lifestyle counselling sessions every third month for 1 year. Primary outcomes included changes in body mass index standard deviation score (BMI SDS) and percentage above the International Obesity Task Force cut-off for overweight (%IOTF-25). Secondary outcomes included changes in sleep, physical activity, and eating behaviour. From pre- to posttreatment there was a statistically significant difference in change in both BMI SDS (0.19 units, 95% confidence interval [CI]: 0.10–0.28, p < .001) and %IOTF-25 (5.48%, 95%CI: 2.74–8.22, p < .001) between FBSFT and TAU groups. FBSFT participants achieved significant reductions in mean BMI SDS (0.16 units, (95%CI: −0.22 to −0.10, p < .001) and %IOTF-25 (6.53%, 95% CI: −8.45 to −4.60, p < .001), whereas in TAU nonsignificant changes were observed in BMI SDS (0.03 units, 95% CI: −0.03 to 0.09, p = .30) and %IOTF-25 (−1.04%, 95% CI: −2.99 to −0.90, p = .29). More FBSFT participants (31.5%) had clinically meaningful BMI SDS reductions of ≥0.25 from pre- to posttreatment than in TAU (13.0%, p = .021). Regarding secondary outcomes, only changes in sleep timing differed significantly between groups. FBSFT improved weight-related outcomes compared to TAU.publishedVersio

    Теоретико-методологічні основи розуміння механізму правового регулювання

    Get PDF
    Метою цієї статті є аналіз напрямів наукових досліджень, що у своїй єдності формують теорію механізму правового регулювання (МПР), розкриття теоретикометодологічних проблем, які мають місце при осмисленні МПР, визначення та систематизація методологічних підходів до розуміння МПР

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    Effect of standing posture during whole body vibration training on muscle morphology and function in older adults: A randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whole body vibration (WBV) is a novel modality of exercise shown to improve musculoskeletal function. This study aims to examine the effects of standing posture during low magnitude WBV training on muscle function and muscle morphology in older adults.</p> <p>Methods</p> <p>Nineteen men and women (50-80 years) were recruited to a three month randomised controlled trial and allocated to one of three groups: WBV with flexed knees (FK), WBV with locked knees (LK), or sham WBV with flexed knees (CON). Exposure was intermittent (1 min WBV:1 min rest) for 20 min, three times per week for 13 weeks. Measurements were taken at baseline and at three months. Primary outcomes included upper and lower body muscle function (strength, power and velocity). Secondary outcomes were muscle morphology, balance, habitual and maximal gait velocity, stair climb power, and chair stand performance.</p> <p>Results</p> <p>Sixteen subjects completed the study. Relative (%) upper body contraction velocity improved significantly after WBV with FK compared to LK (FK 16.0%, LK -7.6%, CON 4.7, p = 0.01). Relative upper body strength (LK 15.1%, p = 0.02; FK 12.1%, p = 0.04; CON 4.7%) increased significantly following WBV compared to control. Absolute (p = 0.05) and relative (p = 0.03) lower leg strength significantly improved with both standing postures (LK 14.4%; FK 10.7%; CON 1.3%). Only the LK group differed significantly from CON in relative leg strength gains (p = 0.02). Potentially clinically meaningful but statistically non-significant improvements in lower leg muscle cross-sectional area (LK 3.7 cm<sup>2</sup>, FK 2.4 cm<sup>2</sup>, CON 2.2 cm<sup>2 </sup>p = 0.13) were observed after WBV with LK compared to the other groups. No significant effects of WBV on any functional performance tests were observed.</p> <p>Conclusions</p> <p>Our results suggest that WBV may improve muscle strength and contraction velocity in some muscle groups in older adults. However, hypothesised differential adaptation to standing posture (FK > LK) was observed only for upper body contraction velocity, making recommendations regarding this prescriptive element inconclusive. The efficacy, mechanism of action and long term feasibility of WBV for musculoskeletal health in older adults warrants continued investigation in robustly designed, sufficiently powered future studies.</p> <p>Trial Registration</p> <p>ACTRN12609000353291.</p

    Growth charts for children with Ellis–van Creveld syndrome

    Get PDF
    Ellis–van Creveld (EvC) syndrome is a congenital malformation syndrome with marked growth retardation. In this study, specific growth charts for EvC patients were derived to allow better follow-up of growth and earlier detection of growth patterns unusual for EvC. With the use of 235 observations of 101 EvC patients (49 males, 52 females), growth charts for males and females from 0 to 20 years of age were derived. Longitudinal and cross-sectional data were collected from an earlier review of growth data in EvC, a database of EvC patients, and from recent literature. To model the growth charts, the GAMLSS package for the R statistical program was used. Height of EvC patients was compared to healthy children using Dutch growth charts. Data are presented both on a scale for age and on a scale for the square root of age. Compared to healthy Dutch children, mean height standard deviation score values for male and female EvC patients were −3.1 and −3.0, respectively. The present growth charts should be useful in the follow-up of EvC patients. Most importantly, early detection of growth hormone deficiency, known to occur in EvC, will be facilitated

    Effects of the neonatal intensive care environment on circadian health and development of preterm infants

    Get PDF
    The circadian system in mammals ensures adaptation to the light-dark cycle on Earth and imposes 24-h rhythmicity on metabolic, physiological and behavioral processes. The central circadian pacemaker is located in the brain and is entrained by environmental signals called Zeitgebers. From here, neural, humoral and systemic signals drive rhythms in peripheral clocks in nearly every mammalian tissue. During pregnancy, disruption of the complex interplay between the mother’s rhythmic signals and the fetal developing circadian system can lead to long-term health consequences in the offspring. When an infant is born very preterm, it loses the temporal signals received from the mother prematurely and becomes totally dependent on 24/7 care in the Neonatal Intensive Care Unit (NICU), where day/night rhythmicity is usually blurred. In this literature review, we provide an overview of the fetal and neonatal development of the circadian system, and short-term consequences of disruption of this process as occurs in the NICU environment. Moreover, we provide a theoretical and molecular framework of how this disruption could lead to later-life disease. Finally, we discuss studies that aim to improve health outcomes after preterm birth by studying the effects of enhancing rhythmicity in light and noise exposure

    Is sequential cranial ultrasound reliable for detection of white matter injury in very preterm infants?

    Get PDF
    Cranial ultrasound (cUS) may not be reliable for detection of diffuse white matter (WM) injury. Our aim was to assess in very preterm infants the reliability of a classification system for WM injury on sequential cUS throughout the neonatal period, using magnetic resonance imaging (MRI) as reference standard. In 110 very preterm infants (gestational age < 32 weeks), serial cUS during admission (median 8, range 4-22) and again around term equivalent age (TEA) and a single MRI around TEA were performed. cUS during admission were assessed for presence of WM changes, and contemporaneous cUS and MRI around TEA additionally for abnormality of lateral ventricles. Sequential cUS (from birth up to TEA) and MRI were classified as normal/mildly abnormal, moderately abnormal, or severely abnormal, based on a combination of findings of the WM and lateral ventricles. Predictive values of the cUS classification were calculated. Sequential cUS were classified as normal/mildly abnormal, moderately abnormal, and severely abnormal in, respectively, 22%, 65%, and 13% of infants and MRI in, respectively, 30%, 52%, and 18%. The positive predictive value of the cUS classification for the MRI classification was high for severely abnormal WM (0.79) but lower for normal/mildly abnormal (0.67) and moderately abnormal (0.64) WM. Sequential cUS during the neonatal period detects severely abnormal WM in very preterm infants but is less reliable for mildly and moderately abnormal WM. MRI around TEA seems needed to reliably detect WM injury in very preterm infants.Epidemiology in Pediatrics and Child Healt

    Rapid progress on the vertebrate tree of life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among the greatest challenges for biology in the 21st century is inference of the tree of life. Interest in, and progress toward, this goal has increased dramatically with the growing availability of molecular sequence data. However, we have very little sense, for any major clade, of how much progress has been made in resolving a full tree of life and the scope of work that remains. A series of challenges stand in the way of completing this task but, at the most basic level, progress is limited by data: a limited fraction of the world's biodiversity has been incorporated into a phylogenetic analysis. More troubling is our poor understanding of what fraction of the tree of life is understood and how quickly research is adding to this knowledge. Here we measure the rate of progress on the tree of life for one clade of particular research interest, the vertebrates.</p> <p>Results</p> <p>Using an automated phylogenetic approach, we analyse all available molecular data for a large sample of vertebrate diversity, comprising nearly 12,000 species and 210,000 sequences. Our results indicate that progress has been rapid, increasing polynomially during the age of molecular systematics. It is also skewed, with birds and mammals receiving the most attention and marine organisms accumulating far fewer data and a slower rate of increase in phylogenetic resolution than terrestrial taxa. We analyse the contributors to this phylogenetic progress and make recommendations for future work.</p> <p>Conclusions</p> <p>Our analyses suggest that a large majority of the vertebrate tree of life will: (1) be resolved within the next few decades; (2) identify specific data collection strategies that may help to spur future progress; and (3) identify branches of the vertebrate tree of life in need of increased research effort.</p

    Neural Correlates of Behavioural Olfactory Sensitivity Changes Seasonally in European Starlings

    Get PDF
    Possibly due to the small size of the olfactory bulb (OB) as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgaris) incorporate aromatic herbs that are rich in volatile compounds (e.g., milfoil, Achillea millefolium) into the nests and they use olfactory cues to identify these plants. Interestingly, European starlings show seasonal differences in their ability to respond to odour cues: odour sensitivity peaks during nest-building in the spring, but is almost non-existent during the non-breeding season.This study used repeated in vivo Manganese-enhanced MRI to quantify for the first time possible seasonal changes in the anatomy and activity of the OB in starling brains. We demonstrated that the OB of the starling exhibits a functional seasonal plasticity of certain plant odour specificity and that the OB is only able to detect milfoil odour during the breeding season. Volumetric analysis showed that this seasonal change in activity is not linked to a change in OB volume. By subsequently experimentally elevating testosterone (T) in half of the males during the non-breeding season we showed that the OB volume was increased compared to controls.By investigating the neural substrate of seasonal olfactory sensitivity changes we show that the starlings' OB loses its ability during the non-breeding season to detect a natural odour of a plant preferred as green nest material by male starlings. We found that testosterone, applied during the non-breeding season, does not restore the discriminatory ability of the OB but has an influence on its size
    corecore