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The circadian system in mammals ensures adaptation to the light-dark cycle on
Earth and imposes 24-h rhythmicity on metabolic, physiological and behavioral
processes. The central circadian pacemaker is located in the brain and is entrained
by environmental signals called Zeitgebers. From here, neural, humoral and
systemic signals drive rhythms in peripheral clocks in nearly every mammalian
tissue. During pregnancy, disruption of the complex interplay between the
mother’s rhythmic signals and the fetal developing circadian system can lead
to long-term health consequences in the offspring. When an infant is born very
preterm, it loses the temporal signals received from the mother prematurely and
becomes totally dependent on 24/7 care in the Neonatal Intensive Care Unit
(NICU), where day/night rhythmicity is usually blurred. In this literature review, we
provide an overview of the fetal and neonatal development of the circadian
system, and short-term consequences of disruption of this process as occurs
in the NICU environment. Moreover, we provide a theoretical and molecular
framework of how this disruption could lead to later-life disease. Finally, we
discuss studies that aim to improve health outcomes after preterm birth by
studying the effects of enhancing rhythmicity in light and noise exposure.
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Introduction

Throughout gestation, the developing fetus is fully taken care of within the uterine
environment of its mother. Via the placenta, the mother sustains temperature control and
provides oxygen, nutrients, and hormones. Inevitably, this means the fetus is exposed to the
daily rhythms inmaternal activity, food intake, and hormones such as melatonin and cortisol
(Reiter et al., 2014a; Bates and Herzog, 2020). In case of very preterm birth (birth before
32 weeks of gestation), the neonate abruptly transitions from this controlled uterine
environment into the chaotic reality of the neonatal intensive care unit (NICU). Over
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the past decades extensive guidelines on perinatal care have been
developed, providing a framework for feeding schedules,
temperature regulation and treatment of morbidities (American
Academy of Pediatrics, Guidelines for perinatal care, 2017). A
subject often overlooked within these guidelines is the
implementation of rhythmic cues in clinical care, such as the
light/dark cycle and feeding rhythms. Recently, Hazelhoff et al.
(2021) discussed that cycled light in the NICU is beneficial for the
alignment and development of the circadian system of the preterm
infant. However, they did not shed light on the relevance of other
environmental factors that may influence the circadian development
of preterm infants in the NICU. The aim of this review is to provide
an overview of the environmental factors, present in the NICU, that
likely influence circadian entrainment of the preterm infant.
Furthermore, we shine light on the underlying theoretical and
molecular framework on how these conditions may program the
preterm infant’s circadian system, and possibly affect their long-
term health. Finally, we elaborate on attempts to enhance the
rhythmicity of the NICU environment to improve short- and
long-term development and health of preterm infants and discuss
which circadian cues should additionally be taken into account.

The circadian system

Circadian rhythms are generated by an internal circadian clock
that allows adaptation of physiological and behavioral functions to
the light-dark cycle on earth. It is coordinated by the central
pacemaker, the paired suprachiasmatic nuclei (SCN), located
bilaterally in the hypothalamus. Since the internal rhythm is not
exactly 24 h, the circadian clock requires daily synchronization. The
synchronization is mediated by light, which is the strongest
Zeitgeber. A non-visual light signal is transmitted from a subset
of retinal ganglion cells containing melanopsin photoreceptors to
the central clock in the SCN. In addition to the SCN, there are
peripheral clocks present in almost all other organs of the body,
including the uterus and placenta (Reppert et al., 1988; Akiyama
et al., 2010; Waddell et al., 2012). From the SCN, temporal
information is transferred to peripheral circadian clocks via the
autonomic nervous system and endocrine signals. Other factors
such as food intake and physical activity or stress also contribute to
synchronization of peripheral clocks (Husse et al., 2015; Do, 2019).
In addition, evidence shows that peripheral clocks can be targeted
directly by changes in their local environment such as temperature
changes (Sumova et al., 2006). Signals received by the SCN or
peripheral cells are processed and lead to synchronization of
intracellular molecular clocks that impose 24 h rhythmicity on
gene expression. Hence, this system ensures that the body can
adapt its physiology to different phases of the day.

At the molecular level, oscillations are generated through
transcriptional/translational feedback loops composed of clock
genes and by posttranslational modifications ensuring rhythmic
protein synthesis and degradation of clock proteins (Reppert
et al., 1988). More specifically, the transcription factors CLOCK
and BMAL1 heterodimerize and activate the transcription of Period
(PER1-3) and Cryptochrome (CRY1-2) genes (Mendoza-Viveros
et al., 2017). PER and CRY proteins, in turn, translocate into the
nucleus where they inhibit the transcriptional activity of

CLOCK:BMAL1 complexes, and thus their own synthesis
(Mendoza-Viveros et al., 2017). Additionally, another feedback
loop involving reverse erythroblastosis virus α (REV-ERBα) and
retinoic acid receptor-related orphan receptor α (RORα) ensures
stabilizing of this oscillation (Mendoza-Viveros et al., 2017).
Together, these molecular mechanisms ensure a 24-h rhythm in
most organs.

Circadian development during
pregnancy

During pregnancy, the circadian rhythm of the fetus is primarily
entrained by maternal cues. The mother rhythmically synthesizes
hormones like melatonin, glucocorticoids, and neurotransmitters
that pass the placenta, thereby transferring circadian signals to the
fetus (Reiter et al., 2014a; Bates and Herzog, 2020). Not only
hormonal cues, but also food intake, exercise, and body
temperature may influence the fetal rhythm (Figure 1A). In
summary, maternal signals function as Zeitgebers for the fetus
throughout pregnancy. The human visual and circadian system
gradually develops during the fetal and early postnatal period.
Human eye development starts from week 4 of gestation, while
the fetal SCN has been visualized by radioactive labeling from week
18 of gestation and shows characteristics of maturation from this
time onwards (Reppert et al., 1988; Rivkees and Lachowicz, 1997).
By midgestation, the SCN neurogenesis and innervation by the
hypothalamic tract is complete. The photoreceptors that are
required for non-image-forming irradiance detection contain the
photopigment melanopsin and are likely the earliest to be functional
in humans (Hattar et al., 2002). Studies in preterm baboons suggest
that the human SCN may become light-responsive at 24 weeks of
gestation, but evidence is limited (Hao and Rivkees, 1999; Hanita
et al., 2009). Although the SCN’s metabolic rhythmicity has been
detected at the end of pregnancy in primates (Seron-Ferre et al.,
2012), clear evidence on the precise timing of the appearance of
endogenous SCN rhythmicity in humans is still lacking. In mice,
rhythmic expression of the first core clock components in the SCN
has been detected around embryonic day 14, and intracellular
synchrony between SCN cells increased as fetal development
proceeded (Landgraf et al., 2014). In several peripheral tissues,
rhythmic clock gene expression was detected around embryonic
day 18–19 (Sladek et al., 2004; Dolatshad et al., 2010). In fetal rats,
SCN rhythmicity in glucose utilization was detected 1–2 days before
birth, but rhythmic clock gene and neuropeptide expression started
to arise postnatally (Reppert and Schwartz, 1984). The fetal rat
adrenal shows robust rhythms of Per2 and Bmal1 at E18, driving
rhythmic secretion of corticosterone (Torres-Farfan et al., 2011). It
remains to be investigated if the observed rhythmicity is driven by
the maturation of the fetal SCN (i.e., increasing intrinsic
rhythmicity) or by entrainment through (external) maternal cues.

Another distinction that is difficult to make is whether the
maternal (endocrine) signals entrain the fetal SCN, or also directly
target the fetal peripheral clocks. The neuropeptides vasopressin
(AVP) and vasoactive intestinal polypeptide (VIP) are expressed in
the SCN where they function as neuronal synchronizers and
stimulate core clock gene expression (Ono et al., 2021). Swaab
et al. (1990) have shown that AVP is detectable in the fetal
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hypothalamus from the 27th week of pregnancy but its rhythmic
expression arises only after birth in humans. The VIP-producing
neurons were first detected in week 31 of pregnancy and also start to
show circadian rhythms postnatally. The neonatal SCN contains a
small number of these AVP- and VIP-expressing neurons,
indicating that this system matures further during the first years
of life (Swaab et al., 1990; Swaab et al., 1994).

As mentioned previously, melatonin is synthesized in a
circadian manner by the maternal pineal gland and is able to
pass the placenta (Okatani et al., 1998; Seron-Ferre et al., 2012).
At daytime, plasma levels of melatonin are low and increase during
nighttime. It is thought that communication between the circadian
system of the mother and the fetus predominantly goes via these
differences in plasma melatonin levels. Interestingly, melatonin
receptors are expressed on many fetal tissues (Williams et al.,
1991). Animal research has shown that maternal pinealectomy
early in gestation results in loss of normal temporal
synchronization in drinking activity in the offspring, indicating
that their SCN is n’t functional (Bellavia et al., 2006). When
maternal melatonin injections were administered during late
gestation, the effects of the pinealectomy on the drinking
behaviour were reversed (Bellavia et al., 2006). In addition,
another study showed that maintaining pregnant non-human
primates under constant light conditions from 60% to 90% of
gestation to suppress melatonin production caused altered clock
gene expression in the fetal SCN (Torres-Farfan et al., 2006). The
effect of melatonin suppression could be reversed by melatonin
replacement. Taken together, this evidence suggests direct
entrainment of the fetal SCN by the maternal endocrine system
in rats and non-human primates, and that maternal melatonin is
required for the development of the fetal circadian system.

Animal and human research has shown that the adrenal gland
serves as a peripheral clock that receives signals from the SCN. As a

result, glucocorticoids are produced in a circadian fashion (Oster
et al., 2006). During gestation, the fetal adrenal gland is thought to
respond to maternal endocrine signals. Torres-Farfan et al. (2006)
showed that the temporal pattern of clock gene expression was
identical between the fetal SCN and adrenal gland in capuchin
monkeys. If the fetal adrenal clock was under control of the fetal
SCN, a phase-delay between the SCN and the peripheral clocks
would have occurred (Valenzuela et al., 2008). Furthermore,
suppressing the maternal adrenal gland in humans using oral
triamcinolone, a synthetic corticosteroid, led to disappearance of
fetal rhythms in heart rate and limb movements (Arduini et al.,
1986). We hypothezise that this may be due to the nonpyshiological
levels of maternal cortisol and the subsequent disappearance of the
24-h cortisol rhythm (Koyanagi et al., 2006; Oster et al., 2017). This
indicates that the cellular rhythms of the fetal SCN and peripheral
clocks are probably driven by maternal signals rather than the
molecular clock of the fetal SCN at this stage of development.

Circadian rhythm and preterm birth

In the event of preterm birth, a tremendous mismatch with the
uterine chronobiological environment arises (Figure 1B). The
neonate loses rhythmic (hormonal) cues, normally received in
utero, and is prematurely exposed to circadian synchronizers like
daylight and enteral nutrition. The SCN and visual system have not
completely matured, as this normally occurs throughout gestation
and continues in the neonatal period after term birth (Swaab, 1995;
Lammertink et al., 2020). Impaired maturation of the circadian
system in preterm infants is likely a leading cause of delayed
development of circadian rhythmicity after preterm birth
(Rivkees and Hao, 2000; Rivkees, 2003). During the first month
after birth, no clear diurnal patterns in activity, rest, or body

FIGURE 1
Circadian rhythm during pregnancy and in preterm birth. (A)Under the regulation of circadian synchronizers, the pregnant mother exhibits a rhythm
in various hormones, metabolites and body temperature that is transferred to the fetus. The fetus in turn develops in body movement, heart rate and
hormone level rhythmicity in late gestation (left panel). Circadian disruption in themother leads to adverse pregnancy outcomes in humans and has future
health consequences in the offspring in animals (right panel). (B)During preterm birth, the infant loses temporal signals of themother and is exposed
to the NICU environment. Disruption of 24-h rhythmicity in the NICU may be associated with longer hospital stay and less weight gain in humans and
might have long-term health consequences.
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temperature have been found (D’Souza et al., 1992; Anders et al.,
1985; Glotzbach et al., 1995). A rhythm in temperature arises by
1 month of age, and after 6 weeks daytime sleep/wake cycles become
more apparent (Kennaway et al., 1992). In line with this, day-night
rhythms in hormone production become apparent, with diurnal
production of melatonin detectable at 12 weeks of age (Kennaway
et al., 1992). Melatonin does not only play a role in sleep-wake
patterns but also exhibits anti-inflammatory, anti-carcinogenic and
anti-oxidant functions (Reiter et al., 2014b). Interestingly, all these
functions also show daily or circadian variations.

In preterm infants, studies on the timing of circadian rhythm
emergence still show conflicting results. D’Souza et al. (1992) have
shown that in the majority of the preterm infants born between
24–29 weeks of gestation no circadian rhythmicity in skin
temperature and heart rate could be observed until they reached
34 weeks of gestation. Others have shown that an ultradian
(i.e., shorter than 24-h) rhythm can be detected around 35 weeks
gestational age, but no clear circadian rhythm could be detected.
Guyer et al. (2012) have shown that very preterm infants admitted to
the NICU show an earlier emergence of a 24-h sleep-wake rhythm
compared to term infants at an equivalent age, indicating that
exposure to environmental time cues plays a role in sleep-wake
rhythm development. On the other hand, there is evidence
suggesting that circadian sleep-wake patterns develop merely as a
result of postnatal brain maturation, independent of environmental
cues (Mirmiran et al., 2003). Further research is warranted to
determine which factor is the major contributor to maturation of
the circadian system in preterm infants.

As mentioned previously, circadian rhythms are entrained by
environmental cues. After preterm birth, parental and nursing care
in the NICU may influence the maturation of circadian rhythms.
Physical contact (parental kangarooing) and nursing care affect
heart rate, sleep, and stress levels of the infant (Santos et al.,
2015); therefore it is likely that these factors drive, or at least
stimulate, the observed ultradian rhythms. On the other hand,
there are many factors that lack strict rhythmicity or disturb
physiological rhythmicity in the NICU, including lack of a clear
day/night rhythm in light and noise exposure, enteral and parenteral
feeding schedules, stressful interventions (blood withdrawal, x-rays,
etc.), physical contact, medication and sleep-wake rhythm
disturbances. All these factors may alter the programming and
maturation of organs and body functions such as development of
the hypothalamic-pituitary-adrenal axis, the autonomic nervous
system, and the circadian system itself (Lammertink et al., 2020).

Early circadian disruption and later life
disease

Epidemiological evidence in humans indicates that disruption of
the circadian rhythm during pregnancy, caused by shiftwork, travel
across time zones or exposure to light at night, can increase the risk
of adverse birth outcomes such as miscarriage, preeclampsia and
preterm delivery (Cai et al., 2019). Subsequently, long-term adverse
health effects have been reported such as sleep disorders, cancer,
susceptibility to infections, metabolic syndrome and aging (Van
Dycke et al., 2015; Yu et al., 2015; Kecklund and Axelsson, 2016;
Shimizu et al., 2016; Charrier et al., 2017; Cai et al., 2019; Logan and

McClung, 2019; Longo et al., 2021). It is thought that these
Non-Communicable Diseases (NCDs) arise because the crosstalk
between the different physiological systems and the circadian system
gets shifted, resulting in alterations in whole-body physiology.
Although these findings imply that disruption of maternal and
thereby fetal rhythms during pregnancy may hamper health and
development, evidence on long-term effects in humans is still
lacking.

Drawing parallels with the evidence for long-term health
consequences of fetal circadian disruption during pregnancy, one
may hypothesize that the same applies to circadian disruption of the
preterm infant. Those born after very or extreme preterm birth
(i.e., born before 28 weeks of gestation) spend the equivalent of their
last trimester of fetal life in an unnatural environment. The
developing preterm infant’s brain is highly sensitive to
environmental exposures, which can cause alterations of neuronal
networks and macroscopic brain structures including the
hypothalamus (Lammertink et al., 2020). In accordance with the
developmental origins of health and disease (DOHaD) theory, this
can have life-long consequences. The DOHaD theory states that
environmental exposures during the periconceptional period and in
early life can lead to epigenetic and developmental adaptations,
increasing vulnerability to disease in later life (Hanson and
Gluckman, 2014).

The exact mechanism of how chronodisruption during
pregnancy or shortly after birth may lead to disease
predisposition in later life is unknown. It may partially be
explained by the DOHaD theory, with epigenetic changes due to
environmental influences. Circadian rhythm disruption and
subsequent alterations in clock gene expression may be one of
the underlying mechanisms leading to increased risk of
neurodevelopmental as well as a variety of cardiometabolic
diseases in human adults (Shimizu et al., 2016).

Animal studies provide evidence that maternal
chronodisruption from the start of gestation using a frequently
shifting light-dark schedule results in a pathological phenotype in
the offspring (Chaves et al., 2019). Strinkingly, a similar pathological
phenotype was observed in Bmal1 deficient mice (Lefta et al., 2012).
Increasing evidence has shown that timing of food intake is a potent
synchronizer for the mammalian circadian system (Challet, 2013).
This is controlled by the SCN and mediated through metabolic
signals such as metabolites (glucose and fatty acids) and hormones
(ghrelin, leptin, and insulin) (Moore and Eichler, 1972; Stephan and
Zucker, 1972; Kalsbeek et al., 2011). Mistimed nutritional intake, for
example, during the subjective night, leads to a transcriptional effect
of the clock on metabolic pathways in peripheral organs such as
liver, white adipose tissue, the adrenal gland, heart and kidney
(Damiola et al., 2000; Storch et al., 2002; Turek et al., 2005;
Zvonic et al., 2006; Hoogerwerf et al., 2007; Lamia et al., 2008).
Circadian-related metabolic diseases after (gestational)
chronodisruption are most likely caused by shifted rhythms in
glucose, insulin, glucocorticoids, leptin and triglycerides leading
to internal desynchronization (Panda, 2016). The endocrine
changes caused by maternal chronodisruption can affect the fetal
programming either directly or indirectly by altering uptake and
delivery of nutrients by the placenta or fetal tissues (Fowden, 1995).
In rats, alteration of the maternal circadian environment by
exposure to chronic photoperiod shifting (CPS) causes impaired
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glucose tolerance and raises nocturnal blood pressure in the
offspring (Mendez et al., 2016). Moreover, CPS exposed offspring
showed increased accumulation of white adipose tissue as seen in
obesity, hyperinsulinemia and low-grade inflammation (Varcoe
et al., 2013; Leproult et al., 2014; Mendez et al., 2016). Since
glucocorticoids are known to regulate fetal (circadian)
development one may hypothezise that they play an important
role in the emergence of these disturbances. Hence, evidence has
shown that elevated maternal glucocorticoid levels can lead to
hypertension, glucose intolerance and abnormal functioning of
the HPA-axis in the offspring (Fowden, 1995; Bertram and
Hanson, 2002). If these metabolic and hormonal disturbances are
(partly) caused by a direct effect from glucocoids on fetal peripheral
clocks remains to be investigated. In addition, Varcoe et al. (2016)
showed that absence of maternal melatonin during pregnancy
induces glucose intolerance in the offspring, suggesting that
melatonin also plays a crucial role in the interplay between the
circadian system and metabolic health. In humans, maternal night-
time food intake has also been linked to impaired glucose tolerance
and an increased risk of gestational diabetes mellitus and obesity
(Colles et al., 2007). In addition, one study showed that in humans
maternal shiftwork during pregnancy is associated with childhood
overweight and metabolic disturbance in the offspring (Liao et al.,
2022). It is important to note that a definite conclusion on the
causality between these adverse health effects and circadian
dysregulation cannot be drawn due to the complexity of these
diseases and possible confounders that may be involved (such as
sleep quality and quantity). In summary, these data indicate that
maternal chronodisruption has far reaching consequences for the
offspring due to alterations of whole-body physiology and
pathologic changes in nearly all organ systems.

Subsequently, exposure to continuous bright light (CBL) or near
darkness (ND) in the postnatal period can cause lasting alterations
to the circadian system. In mice, it was found that exposing pups to
CBL or ND conditions postnatally possibly leads to altered
synchronization within SCN cell populations, impairing SCN
responsiveness to light in the long term (Shimizu et al., 2016).
Moreover, alterations in clock gene levels have been observed: the
amplitude of Per2 rhythms in the SCN, heart, and lung of ND-reared
mice was altered, while those in the liver were unchanged (Chaves
et al., 2019). This might be because the liver’s main synchronizer is
feeding time instead of light. Another research group has shown that
postnatal exposure of rats to CBL leads to long-term alteration of
SCN morphology and the animal’s metabolic state, resulting in a
higher fat mass and loss of glucose and triglyceride rhythmicity
(Madahi et al., 2018). Genetically, postnatal CBL exposure leads to a
change in rhythmicity of most examined clock genes in the retina,
SCN, and the pineal gland in these rats (Kubistova et al., 2020). Five
out of seven examined genes were completely arrhythmic in the SCN
at postnatal day 30 and one gene even at P90 (Kubistova et al., 2020).
In terms of phenotype, mice and rats exposed to CBL postnatally
have been shown to exhibit both anxiety- and depressive-like
behavior (Borniger et al., 2014; Coleman et al., 2016).
Collectively, these findings support the possibility that
chronodisruption during the periconceptional period or early in
life leads to misalignment of the timing of circadian and clock-
controlled gene expression in multiple organ systems. This may
cause long-term morphological, epigenetic and molecular

alterations of whole-body physiology leading to an increased risk
for NCDs. Further research on epigenetic changes due to early life
circadian rhythm disruption and functional analysis of the
consequences of altered clock gene expression should provide
more insights into the mechanisms for disease predisposition.

Rhythmic ques and current NICU
guidelines

To date, little attention has been paid to rhythmic cues in
NICUs. The only circadian synchronizers thus far taken into
account within the NICU guidelines are the illumination and
sound levels. In the past it has been suggested that since the
womb is dark, preterm infants should be cared for in (near) dark
conditions to promote growth, sleep, and (neuro) development (Als
et al., 1994). In the Netherlands, incubator covers and dim lighting
are therefore commonly used to provide semi-dark or dark
conditions all day. Hellstrom-Westas et al. (2001) have shown
that the use of these covers alters sleep patterns in the short-
term, but the long-term effects are unknown. The NIDCAP
(Newborn Individualized Developmental Care and Assessment
Program) developed a method for “optimal” care for preterm
infants in the NICU and has been shown to, among others,
reduce days on mechanical ventilation and oxygen support,
improved weight gain and shorter hospital stays (Als et al., 1994;
Als et al., 2003). However, they do not address (cycled) light
exposure in their approach. Although preclinical and clinical
evidence suggests that reducing light exposure during the night
leads to improved psychomotor development and sleep patterns,
increased stability of the autonomic nervous system, faster weight
gain, shorter NICU stay, and reduced stress in newborns,
implementation in the NICU is difficult (Guyer et al., 2012;
Vasquez-Ruiz et al., 2014; Moselhi Mater et al., 2019). This is
most likely because well-designed randomized controlled trials
are lacking and exposure to high-intensity lightning is known to
increase stress and induce physiological changes (Ozawa et al.,
2010).

At present, optimal NICU illumination is still under debate and
differs per country and even per hospital. The most recent American
guideline on NICU design recommended light exposure not to
exceed 20 lux in preterm infants below 30 weeks of gestation
(White and Consensus Committee on Recommended Design
Standards for Advanced Neonatal Care, 2020). In the NICU,
light levels may vary between 100–200 lux during the day and up
to 50 lux during the night (White and Consensus Committee on
Recommended Design Standards for Advanced Neonatal Care,
2020). These lux levels are recommended to minimize
disruptions to infants’ sleep-wake patterns and to promote
optimal growth and neurodevelopment. In addition, artificial
lighting should be spectrally comparable to daylight and
adjustable, since cycled light (CL) might be beneficial after
28 weeks of gestational age (White et al., 2013). Regarding
acoustic characteristics, high noise levels in the NICU can lead to
arousal, sleep disturbance, changes in brain activity, and hearing loss
(Perlman, 2001; Kuhn et al., 2013; Wroblewska-Seniuk et al., 2017).
In addition, evidence shows that noise exposure can alter clock gene
expression in the SCN and inner ear (Gu et al., 2015; Fontana et al.,
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2019). General sources of noise in the NICU include the monitor
alarms, incubator motor and closing of the incubators. The noise
levels reached by these sources vary between 70–90 decibel (dB), far
more than recommended, as the guideline mentioned above advises
that combined continuous and transient sounds in any bed space
should not exceed 45 dB (White and Consensus Committee on
Recommended Design Standards for Advanced Neonatal Care,
2020). To our knowledge, the effects of cycling noise on
circadian rhythmicity in the NICU have not been studied yet.

Other synchronizers in (neonatal) intensive care units of interest are
(par)enteral feeding practices, caregiving, incubator temperature,
phototherapy administration, sleep disturbance, timing of elective
care procedures, and timing of providing medication. To our
knowledge, there are currently no clinical recommendations for
timing of exposure to these synchronizers. Results of the large
Circadiem trial are expected to shed light on the effect of
introducing a bundle of synchronized care, focused on light and
noise exposure, and timing of medication in neonatal intensive care
for very preterm infants (CIRCA DIEM Trial Information, 2000).
However, what is not being addressed in that trial is supporting
rhythmicity by administration of circadian time-matched human
milk since variations in composition of nutritional intake may be
more physiological (Seron-Ferre et al., 2012). Another gap in
knowledge that needs to be addressed is the role of sleep during the
neonatal preterm period, and specifically active sleep, which is crucial
for early brain development. Respecting infant’s sleep cycles by
individually adjusting care procedures may improve
neurodevelopmental outcomes and decrease morbidities. Monitoring
sleep stages bedside, to better synchronize nursing and stressful
procedures, including regular care blood withdrawals, is promising
(Sentner et al., 2022). Additionally, timing of administration of
corticosteroids or neuro-active medication could be matched to
physiological moments of action (i.e., mornings). However, scientific
evidence for these suggestions is still lacking and future research is
warranted. In the next two paragraphs we will elaborate on two
important cues: light and feeding, their role in the development of
circadian rhythms, and how improving their rhythmicity might lead to
better clinical outcomes.

Cycled light interventions in the NICU

Light is the strongest Zeitgeber for daily clock entrainment and
has been suggested to positively influence the premature circadian
system (Morag and Ohlsson, 2016). Various studies have, therefore
investigated the effects of cycled light (CL) in the NICU versus
continuous bright light (CBL) or near darkness (ND) conditions on
short-term infant outcomes (Mann et al., 1986; Seiberth et al., 1994;
Boo et al., 2002; Brandon et al., 2002; Mirmiran et al., 2003; Rivkees
et al., 2004; Guyer et al., 2012; Watanabe et al., 2013; Vasquez-Ruiz
et al., 2014; Kaneshi et al., 2016; Brandon et al., 2017; Lebel et al.,
2017). All these studies had methodological challenges and
limitations. They were not blinded due to the nature of the
intervention, had small sample sizes, and only included short-
term outcome measures. Additionally, the definitions of CBL or
ND illumination and outcome measures differed between studies.

A Cochrane review from 2016 included nine studies conducted
between 1986 and 2014 (Morag and Ohlsson, 2016). Three of them

compared CL with CBL, with all outcomes in favor of the CL group
(Mann et al., 1986; Miller et al., 1995; Vasquez-Ruiz et al., 2014) with
shorter duration of hospitalization, higher increase in weight gain,
shorter duration on mechanical ventilation and earlier start of oral
feeding (Miller et al., 1995). Interpretation of the data however is
impeded due to high heterogeneity in study designs limiting meta-
analyses. Six other studies compared CL with ND, with meta-
analyses being possible (Seiberth et al., 1994; Boo et al., 2002;
Brandon et al., 2002; Rivkees et al., 2004; Guyer et al., 2012).
These meta-analyses showed that the duration of hospitalization
was significantly shorter when CL was started at 32 weeks
[−12.7 days; 95% CI (−23 to −2.3), n = 77], but not when CL
was started directly at birth [−4.67 days; 95% CI (−14.8 to 5.5) n =
170] (Morag and Ohlsson, 2016). Daily weight gain was not
significantly different within all the included studies. A single
study found no significant difference in days until start of oral
feeding or days on mechanical ventilator (Brandon et al., 2002). The
systematic review concluded that CL in preterm infants leads to a
shorter hospital stay than both CBL and ND, although the quality of
the evidence was assessed as low and several studies had small
sample sizes.

Since the Cochrane review in 2016, four new studies on light-
cycling in the NICU have been published. Two focused on CL versus
CBL (Farahani et al., 2018; Moselhi Mater et al., 2019). Moselhi
Mater et al. (2019) used eye covers versus “normal NICU lighting.”
They showed that the use of eye covers at night reduced distress
levels (p < 0.00) and enhanced quiet sleep, muscle tension and
reduced crying (Moselhi Mater et al., 2019). The other study,
comparing CL and CBL, found a non-significant decrease in
hospitalization length and a significant increase in daily weight
gain in the CL group (Farahani et al., 2018). These findings show
similar trends to the previously mentioned studies. Additionally, one
study compared CL to ND (Chaves et al., 2019). The authors found
no significant differences in physiological stability measures like
heart and respiratory rate, suggesting that CL conditions do not lead
to adverse events (Chaves et al., 2019). Finally, another study
compared early (28 weeks gestational age) and late (36 weeks
gestational age) introduction of CL and found non-significant
improvements in weight gain and hospital stay in the early CL
group (Brandon et al., 2017).

Furthermore, two Japanese studies have investigated practical
solutions for creating CL conditions in the NICU, utilizing the
detection spectrum of melanopsin (Watanabe et al., 2013; Kaneshi
et al., 2016). Watanabe et al. (2013) covered NICU incubators with
red light filters that block the wavelengths detectable by the infant’s
melanopsin photoreceptors during the night. Consequently, the
infants remain visible for caregivers while the synchronizing
effect through the immature retina is blocked. When comparing
infants in the light filter group to CBL they found a significant
increase in day-night activity ratio at 38 weeks, but not at 34 weeks
gestational age (Watanabe et al., 2013). The increase in weight gain
at 60 weeks gestational age was significantly higher in the red filter
group (intervention). Kaneshi et al. (2016) investigated whether
using a red light, undetectable by melanopsin photoreceptors,
during nursing at night would show improvement in comparison
to the use of white light. They found no significant differences in
activity patterns, night-time crying and weight gain, suggesting that
short light exposure of infants during the night does not disturb their
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circadian rhythm development (Kaneshi et al., 2016). Combining
these findings, CL conditions in the NICU could either be achieved
through red light filters or by dimming the lights at night except for
during nursing. In addition, another possibility would be the
removal of the incubator cover during the day. However, more
research on the effects of the infant’s distress levels is required prior
to implementation in clinical setting.

Something to take into account regarding the implementation
of cycled light conditions in the NICU is that approximately 80% of
the preterm infants suffers from jaundice and are treated with
intensive phototherapy (Rennie et al., 2010). The required
duration of phototherapy depends on the severity of jaundice
and should be administered until a statisfactory decline in
serum bilirubin level occurs, which can vary from less than 24 h
to several days (American Academy of Pediatrics Subcommittee on
Hyperbilirubinemia, 2004). During treatment, only short breaks
up to 30 min are recommended. To the best of our knowledge,
time-of-day is currently not taken into account when
administering phototherapy. Regarding the effect of
phototherapy on the circadian rhythm, Chen et al. (2005)
showed that blue light phototherapy in full-term infants altered
the expression of circadian genes BMAL1 and CRY1 and plasma
melatonin levels in peripheral blood mononuclear cells (PBMC),
indicating that phototherapy affects the circadian system.
Interestingly, they state that this response is mediated
completely via extraocular light exposure since the eyes were
covered with black cloth. This raises the question whether eye
covers block the blue light signal and detection by the retina
completely, since the role of extraocular light in circadian
physiology is still questionable (Eastman et al., 2000; Ruger
et al., 2003). In addition, the participants in the study of Chen
et al. (2005) were all full-term infants, while in the NICU the
majority is very preterm. Therefore, the results might not be fully
translatable. Nevertheless, a retrospective cohort study conducted
by van der Linden et al. (2023) demonstrated that phototherapy
has a significant impact on 24-h light-dark cycles in preterm
infants in the NICU. Although the same eye covers were used,
this suggests that phototherapy does affect the circadian sytem in
preterm infants. Future studies are required to gain insight in the
short- and long-term consequences of intensive phototherapy on
the development of the circadian system, including further
elucidation of the underlying mechanism of action. In addition,
we need to explore possibilities for future light interventions in the
NICU while taking the circadian effects from phototherapy into
account.

Chrono-nutrition in the NICU

A circadian cue which to date has not been clinically investigated
in preterm infants is the use of chrono-nutrition. McKenna and
Reiss suggested a chrono-lactomics approach to feeding and breast
milk composition for preterm infants in the NICU to improve
postnatal (circadian) development (McKenna and Reiss, 2018). Very
preterm infants are fed parenterally (continuously) and enterally
after birth. Although no human or animal studies have been
performed on this topic, the continuous intravenous provision of
carbohydrates, proteins and lipids, independent of time of the day,

may disturb the circadian rhythmicity of metabolic processes, which
may negatively affect the maturation of the circadian system of
preterm infants. It is important to note that during pregnancy, the
placenta plays an important role in maternal-fetal nutrient transport
via a complex interplay between placental transporters, maternal
hormones, oxygenation, and nutrient concentrations (Jones et al.,
2007).

In a hospital setting, neonatal enteral feeding (human milk or
formula feeding) is provided on a regular basis (depending on birth
weight and/or gestational/postnatal age, e.g., every 2 hours),
without variation in quantity or timing over the day. Recently,
evidence has shown that human milk can be regarded as a Zeitgeber
since human milk composition varies throughout the day (Hahn-
Holbrook et al., 2019). These circadian variations are thought to
transfer important time-of-day information from the mother to the
infant (Hahn-Holbrook et al., 2019). During the daytime, human
milk contains components that promote activity such as
neuroactive amino acids, immunological signals and cortisol,
while at night, melatonin and tryptophan levels rise and total fat
content increases (Guthrie et al., 1977; Illnerova et al., 1993; Cubero
et al., 2005; Kent et al., 2006). Cubero et al. (2006) have
demonstrated that infants fed with dissociated day or night
formula milk showed improvement in all nocturnal sleep
parameters such as total sleep, sleep efficiency and nocturnal
awakenings, indicating that milk composition plays an
important role in the development of the circadian system. In
addition, other studies have shown that breastfed infants develop
circadian rhythmicity in body temperature significantly earlier
compared to formula-fed infants (Lodemore et al., 1992),
suggesting that human milk promotes the development of the
circadian system. Furthermore, Booker et al. (2022) have shown
preliminary evidence that mistimed breast milk affects sleep onset
and nighttime awakenings in infants born at term. Since the
circadian system of preterm infants is not fully matured yet,
synchronization of composition and provision of expressed
human milk to the infant may facilitate the maturation and
synchronization of the neonate’s circadian system. In contrast,
unsynchronized milk may disrupt or delay circadian
development. In order for the milk to be fully synchronized, the
circadian rhythm of the mother has to be optimal (i.e., no shiftwork
or jetlag). Whether synchronization of milk is feasible in the NICU
setting and has beneficial effects on the infant’s sleep homeostasis
and short- and long-term health, needs further study.

As these theories potentially have major impact on health and
development of preterm infants, more research is required on
optimizing parenteral and enteral nutrition in the NICU. We
hypothesize that optimization of the mother’s circadian rhythm,
an optimized feeding strategy and circadian-matched provision of
milk may improve circadian development and simultaneously
promote the neonate’s growth and health while minimizing the
long-term risk of chronic diseases.

Conclusion and future perspectives

In summary, the presented evidence underlines the importance
of entrainment of the circadian rhythm in preterm infants. Although
many questions remain unanswered, there is increasing evidence
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that caring for preterm infants in cycling light conditions is not
harmful and has beneficial short-term effects. Furthermore, animal
studies show that there might be long-term health consequences of
circadian rhythm disruption in early life. Studies with larger sample
sizes and longer follow-up are necessary to unravel other effects of
CL conditions on preterm infants’ health. This knowledge could be
achieved through randomized controlled trials or via cohort studies
comparing CL and previous (CBL or ND) practice, since the new
guidelines mention that cycling light in NICUs may be beneficial
(White et al., 2013). Additionally, other circadian synchronizers like
feeding- and medication timing, noise levels and temperature
variations should be investigated further. Especially since the
visual system is not fully developed in preterm infants and they
would have received non-visual temporal signals in utero. Although
the infants are bound to prescribed feeding schedules, 24-h
rhythmicity might be stimulated by oscillations in nutritional
caloric load or using circadian-matched (human) milk at a
specific time of the day. Finally, mechanistic insights into the
long-term effects of circadian clock programming are necessary.
Since weight gain was one of the observed short-term effects,
metabolic disease might be a logical starting point. Animal
studies on the epigenetic effects of perinatal CBL or ND
exposure could provide insights, since epigenetic alterations in
early life are known to be associated with later life disease.
Furthermore, the known alterations in gene expression due to
early life circadian disruption should be investigated functionally
in animal and in vitro models in order to access their influence on
organ and cell function and provide a possible link to (metabolic)
diseases.
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