93 research outputs found

    Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    Get PDF
    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality

    Impacts of algal blooms and microcystins in fish on small-scale fishers in Winam Gulf, Lake Victoria: implications for health and livelihood

    Get PDF
    Lake Victoria, bordered by Kenya, Tanzania, and Uganda, provides one of the largest freshwater fisheries in the world and supports millions in small-scale fishing communities. Historical environmental change, including population growth, nutrient loading, introduced invasive species, and rising temperatures, has resulted in eutrophication and persistent cyanobacterial harmful algae blooms (cyanoHABs) over recent decades, particularly in the shallower gulfs, bays, and inlets. CyanoHABs impact fisheries and food web dynamics and compromise food and water security for nearshore fisher populations. In this study, we examine the socialecological impact of freshwater blooms on fisher health in one of these eutrophic regions, Winam Gulf in Lake Victoria. CyanoHABs persist for months and produce microcystins and hepatotoxins at levels unsafe for human health. We assessed potential risk and contribution of microcystin exposure through fish consumption, in addition to exposure through water source, and conducted 400 fisher and 400 household surveys. Average microcystin concentrations exceeded the World Health Organization (WHO) guideline for drinking water consistently during the long dry season, and cyanobacterial cell counts surpassed WHO standards for recreational risk in 84% of samples. Hazard quotients for fish consumed by young children were 5 to 10 times higher than permissible levels. In addition, fishers chronicled profound ecosystem changes with direct impact on livelihood, fisheries, and water quality with 77.4% reporting a decline in profit or catch, 83.1% reporting adverse impacts of cyanoHABs on fish in the lake, and 98.2% reporting indicators of declining water quality in the lake overall. Through the application of a social-ecological lens to a public health model, we identified spheres of influence that modify how fishers experience HABs related stressors and risks to provide a starting point at which to identify sustainable strategies to improve food and water security and livelihood for the millions in nearshore communities

    Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009

    Get PDF
    This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach)
    corecore