33 research outputs found

    MICB0106 gene polymorphism is associated with ulcerative colitis in central China

    Get PDF
    Background: The highly polymorphic nonclassical MHC class I chain-related genes A and B (MICA and MICB) encode stress-inducible glycoproteins expressed on various epithelial cells including intestinal epithelial cells. MICA and MICB gene polymorphisms and expressions are associated with autoimmune diseases but not known in ulcerative colitis (UC). Aims: To investigate the association of MICB exon 2-4 polymorphisms and soluble MICA (sMICA) expression with the susceptibility of UC in central China. Materials and methods: Genomic DNA was isolated from peripheral blood. The allele frequencies of MICB exon 2-4 were genotyped in 105 UC patients and 213 healthy controls by PCR single-stranded conformation polymorphism method. Thirty-two patients and 32 controls were selected for determining serum sMICA expression by ELISA. Results: Allele frequency of MICB0106 was significantly higher in UC patients than in healthy controls (19.0% vs. 8.9%, corrected P (Pc)=0.0006), especially in patients with extensive colitis (24.4% vs. 8.9%, Pc=0.0006), moderate and severe disease (24.1% vs. 8.9%, Pc=0.0006), extraintestinal manifestations (20.5% vs. 8.9%, Pc=0.012), male patients (22.1% vs. 8.0%, Pc=0.006), and patients over the age of 40 years (28.8% vs. 8.3%, Pc=0.0006). The sMICA level was significantly higher in UC than in healthy controls (604.41±480.43 pg/ml vs. 175.37±28.31 pg/ml, P=0.0001) but not associated with the MICB0106 genotypes. Conclusions: Overall, MICB0106 allele was positively associated with UC in the Han Chinese in central China. sMICA was highly expressed in UC but not associated with the MICB0106 genotype

    Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

    Get PDF
    IFIH1 gain‐of‐function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    DNA methylation age of blood predicts all-cause mortality in later life

    Get PDF
    Background: DNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age. Results: Here we test whether differences between people's chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age ({increment}age) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between {increment}age and mortality. A 5-year higher {increment}age is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher {increment}age. A pedigree-based heritability analysis of {increment}age was conducted in a separate cohort. The heritability of {increment}age was 0.43. Conclusions: DNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors

    KRAS p.G12C mutation occurs in 1% of EGFR-mutated advanced non-small-cell lung cancer patients progressing on a first-line treatment with a tyrosine kinase inhibitor

    Full text link
    Background: KRAS is mutated in ∼30% of non-small-cell lung cancer (NSCLC) but it has also been identified as one of the mechanisms underlying resistance to tyrosine kinase inhibitors (TKIs) in EGFR-positive NSCLC patients. Novel KRAS inhibitors targeting KRAS p.G12C mutation have been developed recently with promising results. The proportion of EGFR-positive NSCLC tumours harbouring the KRAS p.G12C mutation upon disease progression is completely unexplored. Materials and methods: Plasma samples from 512 EGFR-positive advanced NSCLC patients progressing on a first first-line treatment with a TKI were collected. The presence of KRAS p.G12C mutation was assessed by digital PCR. Results: Overall, KRAS p.G12C mutation was detected in 1.17% of the samples (n = 6). In two of these cases, we could confirm that the KRAS p.G12C mutation was not present in the pre-treatment plasma samples, supporting its role as an acquired resistance mutation. According to our data, KRASG12C patients showed similar clinicopathological characteristics to those of the rest of the study cohort and no statistically significant associations between any clinical features and the presence of the mutation were found. However, two out of six KRASG12C tumours harboured less common EGFR driver mutations (p.G719X/p.L861Q). All KRASG12C patients tested negative for the presence of p.T790M resistance mutation. Conclusions: The KRAS p.G12C mutation is detected in 1% of EGFR-positive NSCLC patients who progress on a first line with a TKI. All KRASG12C patients were negative for the presence of the p.T790M mutation and they did not show any distinctive clinical featureThis work was supported by CLARIFY project (https://www.clarify2020.eu/). ES-H was supported by the Consejería de Ciencia, Universidades e Innovación of the Comunidad de Madrid (Doctorados Industriales of the Comunidad de Madrid) [grant number IND2019/BMD-17258]. EG-V was supported by AECC (Asociación española Contra el Cáncer) grant ‘Programa de Prácticas de Laboratorio de curso académico AECC 2020’ (no grant number)
    corecore