3,666 research outputs found

    Direct and Heterodyne Detection of Microwaves in a Metallic Single Wall Carbon Nanotube

    Full text link
    This letter reports measurements of microwave (up to 4.5 GHz) detection in metallic single-walled carbon nanotubes. The measured voltage responsivity was found to be 114 V/W at 77K. We also demonstrated heterodyne detection at 1 GHz. The detection mechanism can be explained based on standard microwave detector theory and the nonlinearity of the DC IV-curve. We discuss the possible causes of this nonlinearity. While the frequency response is limited by circuit parasitics in this measurement, we discuss evidence that indicates that the effect is much faster and that applications of carbon nanotubes as terahertz detectors are feasible

    Water Fun at Exploration Station

    Get PDF
    This report documents the design and fabrication processes involved for the creation of an interactive science exhibit for the Grover Beach Exploration Station. This is a student-led senior project advised by Sarah Harding, professor of mechanical engineering, as a part of California Polytechnic State University in San Luis Obispo’s mechanical engineering program. The final product is a fully functioning, durable system that is capable of pumping and recycling water throughout use when users are in its vicinity. The exhibit is to be considered in 4 main subsystems: basin, plumbing, frame, and sleep mode system. A fiberglass basin that holds all the water in the exhibit sits recessed inside a welded steel frame. Water is pumped through the bottom of the basin from within an enclosed storage area inside the frame, and is recycled back into the water reservoir by placement of two weir valves. A submersible pump powers the exhibit, and is controlled by passive infrared sensors that activate when human presence is sensed within 15ft. While the manufacturing process did reach completion, testing and verification did not. However, proposed testing plans are still included in the appendices of the report for informational purposes. Divided into distinct sections, this report will enlighten the reader on each part of the design process. First, background research and preliminary design explains the methodology of developing the vision of the final design. Next, different design analysis techniques are given for each respective subsystem of the proposed exhibit. An in-depth description for manufacturing and testing of the completed exhibit is given for each subsystem. Finally, recommendations are given for future improvements to the exhibit, and what kinds of different decisions would be made in the design process if given a second iteration

    Activation of waste tire char by cyclic liquid-phase oxidation

    Full text link
    Activation of waste tire char was performed by successive cycles of liquid-phase oxidation followed by desorption in inert atmosphere at 650 °C. Significant differences in porosity development were found for the three oxidizing agents evaluated: nitric acid > hydrogen peroxide > ammonium persulfate. A linear increase of burn-off with the number of cycles was observed, reaching values between 63 and 90% after 15 activation cycles. Within the range tested, a higher concentration of the oxidizing agent (15 vs 30% v) led to higher burn-off, especially in the case of H2O2, however no differences were observed in terms of BET surface area (S BET) developed per unit of burn-off. SBET values around 750-400 m2/g were obtained by activation with HNO3 and H2O2, respectively. The activated carbons prepared by activation with HNO3 showed much higher mesopore volume (0.47-0.60 cm3/g) and some contribution of microporosity (0.03-15 cm 3/g). The mesopore size distribution in the samples activated with HNO3 (2-7 nm) was displaced to lower values than in the case of H2O2 (4-10 nm). The comparison with cyclic activation with air shows that liquid-phase oxidation provides higher porosity development, especially in the mesopore region but at the expense of higher burn-offThe authors greatly appreciate financial support from the Spanish Ministerio de Ciencia e Innovación (CTQ2009-09983) and the Ministerio de Economía y Competitividad (CTQ2012-32821

    Toward Face Biometric De-identification using Adversarial Examples

    Get PDF
    The remarkable success of face recognition (FR) has endangered the privacy of internet users particularly in social media. Recently, researchers turned to use adversarial examples as a countermeasure to privacy attacks. In this paper, we assess the effectiveness of using two widely known adversarial methods (BIM and ILLC) for de-identifying personal images. We discovered, unlike previous claims in the literature, that it is not easy to get a high protection success rate (suppressing identification rate) with imperceptible adversarial perturbation to the human visual system. Finally, we found out that the transferability of adversarial examples is highly affected by the training parameters of the network with which they are generated

    Platinum and N-doped carbon nanostructures as catalysts in hydrodechlorination reactions

    Full text link
    Novel Pt catalysts supported on undoped and N-doped (1% N, w) carbons with well interconnected and nanostructured mesoporosity (Vmesopore = 0.65 cm3 g−1, SEXT = 730 m2 g−1) were prepared and tested in the hydrodechlorination of 4-chlorophenol in water at 30–70 °C. The growth of Pt nanoparticles was achieved using incipient wetness impregnation and a modified colloidal synthesis. Total conversion of 4chlorophenol and 100% selectivity to cyclohexanol was achieved. The remarkable activity in the hydrogenation of the phenol resulting from hydrodechlorination has not been reported before with Pt catalysts and it is of high interest because it maximizes detoxification. When the Pt NPs were synthesized by incipient wetness impregnation some influence of the N-doping of the support was observed in the size and electronic state of the NPs. However, highly reproducible Pt NPs were prepared by in situ colloidal synthesis regardless the nature of the support. In this last case similar activity was observed for the catalysts with undoped and N-doped carbon support, although the activity increased more with temperature for the later. Apparent activation energies of 15–25 kJ mol−1 were obtained for the disappearance of 4-chlorophenolThe authors also thank to Hexion Speciality Chemicals Iberica S.A. for providing the resol resin Bakelite®PF9934 FL. The authors thank financial support (CTQ2012-32821, CTQ2015-65491_R) and C. Ruiz-García for PhD grant (BES-2013-066085) to MINEC

    Improving the activity in hydrodechlorination of Pd/C catalysts by nitrogen doping of activated carbon supports

    Full text link
    Aqueous phase 4-chlorophenol hydrodechlorination reaction was used to study the effect of N-doping of activated carbon support on the catalytic activity of Pd catalysts. Activated carbon was doped using pyridine and 1,10-phenantroline, reaching nitrogen contents of 0.42-1.22 and 1.35-4.19 % (w), respectively. All catalysts (0.75 % Pd w, carbon basis) showed relatively large Pd nanoparticles (35-55nm), but they exhibited fast and complete 4-chlorophenol disappearance in batch experiments. In runs at 30°C 4-chlorophenol disappearance was mainly ascribed to hydrodechlorination, although N-doping of the support also increased adsorption. Catalysts with supports doped with pyridine yielded higher 4-chlorophenol disappearance rate in spite of lower bulk nitrogen content, however they showed higher concentration of nitrogen species at the external surface and lower loss of surface area during the doping. 4-chlorophenol disappearance rate was boosted at 60°C, with minor differences between catalysts with undoped and N-doped supports, but generation of cyclohexanone was only observed for the ones with doped support. Phenol generation simultaneous to 4-chlorophenol disappearance was observed with all the catalysts. However, subsequent hydrogenation to cyclohexanone ocurred only with the catalysts supported on N-doped activated carbonThe authors greatly appreciate the financial support of this research from the Spanish Ministry of Economy and Competitiveness through the project CTQ2012-3282

    A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU

    Get PDF
    Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).Our nearest neighbor, Proxima Centauri, hosts a temperate terrestrial planet. We detected in radial velocities evidence of a possible second planet with minimum mass m c sin i c = 5.8 ± 1.9 M ⊕ and orbital period P c = 5.21 - 0.22 + 0.26 years. The analysis of photometric data and spectro-scopic activity diagnostics does not explain the signal in terms of a stellar activity cycle, but follow-up is required in the coming years for confirming its planetary origin. We show that the existence of the planet can be ascertained, and its true mass can be determined with high accuracy, by combining Gaia astrometry and radial velocities. Proxima c could become a prime target for follow-up and characterization with next-generation direct imaging instrumentation due to the large maximum angular separation of ~1 arc second from the parent star. The candidate planet represents a challenge for the models of super-Earth formation and evolution.Peer reviewedFinal Published versio

    Teaching DBT Skills to DACA Recipients and their Families: Findings from an ECHO Program

    Get PDF
    Deferred Action for Childhood Arrivals (DACA) offers temporary administrative relief from deportation for undocumented immigrant adolescents and young adults who were brought as children to the United States. Accordingly, DACA has contributed to creating a different landscape of opportunities for this group. However, DACA has been and continues to be highly contested in the national political climate. Threats to DACA give rise to considerable anxiety, fear, and distress among its recipients, who face significant barriers to accessing mental health care services. Thus, a group of psychologists partnered with a leading immigrant rights advocacy organization and formed a reciprocal collaboration to understand and meet the mental health needs of undocumented communities. A major focus of the collaboration is to foster learning and support members of the immigrant community in contributing to their own well-being. The collaborative developed and delivered a stand-alone web-based mental health education session to DACA recipients and their families and practitioners serving this population. The session presented the use of dialectical behavioral therapy skills, three emotion regulation and four distress tolerance skills, as a strength-based approach to managing painful emotions and distress. Session content was adapted to include culturally informed examples for each skill. Quantitative and qualitative findings show that those who participated in the web-based program benefited from the education received. Findings also underscored participants’ need for learning culturally sensitive coping strategies for managing stress. We provide recommendations on the delivery of culturally congruent healing interventions for immigrants with a focus on enhancing access among immigrant communities

    Exploration of the treatment of fish-canning industry effluents by aqueous-phase reforming using Pt/C catalysts

    Full text link
    In the current work, an exploratory study on the application of catalytic aqueous phase reforming (APR) to the treatment of fish-canning wastewater was performed for the first time. Pt/C (3%, w) catalysts were supported on different commercial carbon supports (two activated carbons and a carbon black) and tested in the APR of tuna-cooking wastewater. The effect of the supports and the reaction systems (batch vs. semi-continuous) on the performance of the catalysts was tested. The stability of the catalysts upon 3 successive reuse cycles was checked. TOC and COD removal ranged within 45-60%, which was ascribed to adsorption on the supports, hydrothermal carbonization and APR. The percentage of valuable gases (H2 and alkanes) reached up to 18% of the gas production showing the potential of APR for the valorization and treatment of wastewater. The production of gases is affected by the high chloride, acetate and phosphate concentrations, which may provoke catalyst deactivation. The use of a catalyst with a basic support significantly increased the production of gases and the H2 percentage in the gas fraction. Gas production was higher in semi-continuous compared to batch operation, maybe because the withdrawn gas displaces the reaction towards the products. The percentage of alkanes in the gas phase decreased upon successive catalyst reuse cycles at the expense of H2, which is probably due to sintering of Pt nanoparticles with the corresponding decrease of the number of low-coordinated Pt sites promoting methanation reactionsThe authors greatly appreciate financial support from Spanish MINECO (CTQ2015-65491-R). A. S. Oliveira thanks the Spanish MINECO for a research grant (BES-2016-077244
    • …
    corecore