21 research outputs found

    Thousands of Rab GTPases for the Cell Biologist

    Get PDF
    Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology

    Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2-, AP-1-, and Rab22-dependent steps

    No full text
    The transporter ATP7A mediates systemic copper absorption and provides cuproenzymes in the trans-Golgi network (TGN) with copper. To regulate metal homeostasis, ATP7A constitutively cycles between the TGN and plasma membrane (PM). ATP7A trafficking to the PM is elevated in response to increased copper load and is reversed when copper concentrations are lowered. Molecular mechanisms underlying this trafficking are poorly understood. We assess the role of clathrin, adaptor complexes, lipid rafts, and Rab22a in an attempt to decipher the regulatory proteins involved in ATP7A cycling. While RNA interference (RNAi)–mediated depletion of caveolin 1/2 or flotillin had no effect on ATP7A localization, clathrin heavy chain depletion or expression of AP180 dominant-negative mutant not only disrupted clathrin-regulated pathways, but also blocked PM-to-TGN internalization of ATP7A. Depletion of the μ subunits of either adaptor protein-2 (AP-2) or AP-1 using RNAi further provides evidence that both clathrin adaptors are important for trafficking of ATP7A from the PM to the TGN. Expression of the GTP-locked Rab22aQ64L mutant caused fragmentation of TGN membrane domains enriched for ATP7A. These appear to be a subdomain of the mammalian TGN, showing only partial overlap with the TGN marker golgin-97. Of importance, ATP7A remained in the Rab22aQ64L-generated structures after copper treatment and washout, suggesting that forward trafficking out of this compartment was blocked. This study provides evidence that multiple membrane-associated factors, including clathrin, AP-2, AP-1, and Rab22, are regulators of ATP7A trafficking

    Resultados da cirurgia de catarata em pacientes diabéticos : resultados do Pan-American Collaborative Retina Study Group

    No full text
    Purpose: This study was designed to evaluate the visual and anatomical outcomes after cataract surgery in diabetic patients with different intraoperative therapeutic strategies. Methods: The research design comprised of a multicentric, retrospective, interventional study conducted at 6 centers in Argentina, Brazil, Costa Rica, Puerto Rico, Spain, and Venezuela. We included 138 diabetic patients with at least 6-month follow-up following phacoemulsification and intraocular lens implantation. Best-corrected visual acuity (BCVA) and central subfield thickness were collected at baseline and at 1-, 2-, 3-, and 6-month follow-up. Of these, 42 cases were not treated with any intraoperative coadjuvant medication (Group 1), 59 patients received intraoperative bevacizumab (Group 2) and 37 patients received intraoperative triamcinolone (4 mg/0.1 ml) (Group 3). Results: The mean logMAR [± standard deviation (SD)] BCVA improved from 0.82 (± 0.43) at baseline, to 0.14 (± 0.23) at 6-month follow-up (p<0.001) in Group 1; from 0.80 (± 0.48) to 0.54 (± 0.45) (p<0.001) in Group 2; and from 1.0 (± 0.40) to 0.46 (± 0.34) (p<0.001) in Group 3. The mean central subfield thickness increased from 263.57 μm (± 35.7) at baseline to 274.57 μm (± 48.7) at 6-month follow-up (p=0.088) in Group 1; from 316.02 μm (± 100.4) to 339.56 μm (± 145.3) (p=0.184) in Group 2; and from 259.18 μm (± 97.9) to 282.21 μm (± 87.24) (p=0.044) in Group 3. Conclusions: Diabetic patients may significantly benefit from cataract surgery. This study provides evidence to support the use of intravitreal triamcinolone or bevacizumab at the time of cataract surgery in cases with pre-existent diabetic macular edema or moderate-severe non-proliferative diabetic retinopathy

    Heterogeneous Duplications in Patients with Pelizaeus-Merzbacher Disease Suggest a Mechanism of Coupled Homologous and Nonhomologous Recombination

    Get PDF
    We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoints were highly variable, distal breakpoints tended to cluster around low-copy repeats (LCRs) (50% of distal breakpoints), and each duplication event appeared to be unique (100 kb to 4.6 Mb in size). Sequence analysis of the junctions revealed no large homologous regions between proximal and distal breakpoints. Most junctions had microhomology of 1–6 bases, and one had a 2-base insertion. Boundaries between single-copy and duplicated DNA were identical to the reference genomic sequence in all patients investigated. Taken together, these data suggest that the tandem duplications are formed by a coupled homologous and nonhomologous recombination mechanism. We suggest repair of a double-stranded break (DSB) by one-sided homologous strand invasion of a sister chromatid, followed by DNA synthesis and nonhomologous end joining with the other end of the break. This is in contrast to other genomic disorders that have recurrent rearrangements formed by nonallelic homologous recombination between LCRs. Interspersed repetitive elements (Alu elements, long interspersed nuclear elements, and long terminal repeats) were found at 18 of the 26 breakpoint sequences studied. No specific motif that may predispose to DSBs was revealed, but single or alternating tracts of purines and pyrimidines that may cause secondary structures were common. Analysis of the 2-Mb region susceptible to duplications identified proximal-specific repeats and distal LCRs in addition to the previously reported ones, suggesting that the unique genomic architecture may have a role in nonrecurrent rearrangements by promoting instability

    Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components

    No full text
    corecore