788 research outputs found
Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants
Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
Mammographic over-screening: Evaluation based on probabilistic linkage of records databases from the breast cancer information system (SISMAMA)
The Brazilian Ministry of Health recommends biennial mammographic screening for women aged between 50 and 69 years. Since screening is opportunistic in the country, the actual periodicity varies. This study sought to test a methodology for estimating over-screening due to excessive periodicity, defined as a smaller than recommended interval between exams, and its association with socio-demographic characteristics. A cohort of women who underwent mammography in 2010, and whose result was normal, was assembled through probabilistic linkage SISMAMA records based on a set of personal identifiers. We used data from women living in the micro health region of Juiz de Fora/Lima Duarte/Bom Jardim, Minas Gerais State, Brazil, who were followed in the System until the end of 2012. The rate of over-screening was 150/1,000 women/year (95%CI: 144.9-155.9), affecting 21% of women. Over-screening increased by 24% during Pink October campaigns (adjusted HR = 1.24; 95%CI: 1.15-1.35). The shorter the time passed since the last mammogram, the greater the odds of over-screening. Compared with women who had never had a mammogram prior to 2010, women who had had one in the previous 2 years were two times more likely to be over-screened (adjusted HR = 2.01; 95%CI: 1.74-2.31) whilst those who had had a mammogram ≤ 1 year previously were three times more likely to be over-screened (adjusted HR = 3.27; 95%CI: 2.87-3.73). Over-screening was substantial in this population, excessively exposing women to the risks of screening with no additional benefits and overestimating mammogram coverage. The methodology proved to be successful and should be applied to representative populations in order to guide breast cancer control policies
Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks
Recurrent neural networks (RNNs) are widely used in computational
neuroscience and machine learning applications. In an RNN, each neuron computes
its output as a nonlinear function of its integrated input. While the
importance of RNNs, especially as models of brain processing, is undisputed, it
is also widely acknowledged that the computations in standard RNN models may be
an over-simplification of what real neuronal networks compute. Here, we suggest
that the RNN approach may be made both neurobiologically more plausible and
computationally more powerful by its fusion with Bayesian inference techniques
for nonlinear dynamical systems. In this scheme, we use an RNN as a generative
model of dynamic input caused by the environment, e.g. of speech or kinematics.
Given this generative RNN model, we derive Bayesian update equations that can
decode its output. Critically, these updates define a 'recognizing RNN' (rRNN),
in which neurons compute and exchange prediction and prediction error messages.
The rRNN has several desirable features that a conventional RNN does not have,
for example, fast decoding of dynamic stimuli and robustness to initial
conditions and noise. Furthermore, it implements a predictive coding scheme for
dynamic inputs. We suggest that the Bayesian inversion of recurrent neural
networks may be useful both as a model of brain function and as a machine
learning tool. We illustrate the use of the rRNN by an application to the
online decoding (i.e. recognition) of human kinematics
Surface Localization of Glucosylceramide during Cryptococcus neoformans Infection Allows Targeting as a Potential Antifungal
Cryptococcus neoformans (Cn) is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1) was deleted in Cn, resulting in a strain (Δgcs1) that does not produce glucosylceramide (GlcCer) and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO2). These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz), a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics
A Water-Bridged Cysteine-Cysteine Redox Regulation Mechanism in Bacterial Protein Tyrosine Phosphatases
The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical editing strategy to identify a water-mediated motif that modulates accessibility of the protein tyrosine phosphatase A (PtpA) catalytic pocket. Importantly, this water-mediated Cys-Cys non-covalent motif is also present in the phosphatase SptpA from Staphylococcus aureus, which suggests a potentially preserved structural feature among bacterial tyrosine phosphatases. The identification of this structural water provides insight into the known resistance of Mtb PtpA to the oxidative conditions that prevail within an infected host macrophage. This strategy could be applied to extend the understanding of the dynamics and function(s) of proteins in their native state and ultimately aid in the design of small-molecule modulators.e thank CNPq Brazil (fellowship 200456/2015-6 to J.B.B. and grants 454507/2014-3 and 300606/2010-9 to H.T.), the Fundação para a CiĂŞncia e a Tecnologia (FCT Investigator award IF/00624/2015 to G.J.L.B.), the European Union (Marie-Sklodowska Curie Innovative Training Network Protein Conjugates; Marie SkĹ‚odowska-Curie Individual Fellowship 743640 to T.R.; Marie-Curie Intra-European Fellowship 626890 to O.B.), the Ministerio de EconomĂa, Industria, y Competitividad (project CTQ2015-67727-R to F.C.), and the Biotechnology and Biological Sciences Research Council (PhD studentship to L.D.) for funding. G.J.L.B. is a Royal Society University Research Fellow and the recipient of a European Research Council Starting Grant (TagIt, 676832 ). We also acknowledge funding by LISBOA-01-0145-FEDER-007391, co-financed by FEDER through the Programa Operacional Regional de Lisboa (Lisboa 2020) of PORTUGAL 2020 and by FCT Portugal
It Takes Two to Tango: Defining an Essential Second Active Site in Pyridoxal 5′-Phosphate Synthase
The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2) that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5′-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5′-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery
Rapid Imaging of Tumor Cell Death in vivo using the C2A domain of Synaptotagmin-I
Cell death is an important target for imaging the early response of tumors to treatment. We describe here validation of a phosphatidylserine-binding agent for detecting tumor cell death in vivo based on the C2A domain of Synaptotagmin-I.
Methods: The capability of near infrared fluorophore-labeled and 99mTechnetium- and 111Indium-labeled derivatives of C2Am for imaging tumor cell death, using planar near infrared fluorescence (NIRF) imaging and single photon computed tomography (SPECT) respectively, was evaluated in implanted and genetically engineered mouse models of lymphoma and in a human colorectal xenograft.
Results: The fluorophore labeled C2Am derivative showed predominantly renal clearance and high specificity and sensitivity for detecting low levels of tumor cell death (2-5%). There was a significant correlation (R>0.9, P<0.05) between fluorescently-labeled C2Am binding and histological markers of cell death, including cleaved caspase-3, whereas there was no such correlation with a site-directed mutant of C2Am (iC2Am) that does not bind phosphatidylserine. 99mTc-C2Am and 111In-C2Am also showed favorable biodistribution profiles, with predominantly renal clearance and low non-specific retention in liver and spleen at 24 h after probe administration. 99mTc-C2Am and 111In-C2Am generated tumor-to-muscle ratios in drug-treated tumors of 4.3Ă— and 2.2Ă— respectively at two hours and 7.3Ă— and 4.1Ă— respectively at twenty-four hours after administration.
Conclusion: Given the favorable biodistribution profile of 99mTc- and 111In-labelled C2Am, and their ability to produce rapid and cell death-specific image contrast, these agents have potential for clinical translation.This work was supported by a Cancer Research UK programme grant to K.M.B. S.F. was the recipient of a Ph.D. studentship from the Cambridge Biomedical Research Centre of the National Institute of Health Research with financial support from GlaxoSmithKline UK. T.B.R. was in receipt of Intra-European Marie Curie (FP7-PEOPLE-2009-IEF, Imaging Lymphoma) and Long-term EMBO (EMBO-ALT-1145-2009) fellowships
Protocolo na assistĂŞncia prĂ©-natal: ações, facilidades e dificuldades dos enfermeiros da EstratĂ©gia de SaĂşde da FamĂlia
Este estudo teve como objetivo conhecer a percepção dos enfermeiros acerca do uso do protocolo de suas atribuições na assistĂŞncia prĂ©-natal, identificando as ações de saĂşde desenvolvidas por esses profissionais, assim como os pontos facilitadores e dificultadores no uso do referido protocolo. Trata-se de um estudo qualitativo, desenvolvido junto aos enfermeiros da EstratĂ©gia de SaĂşde da FamĂlia do municĂpio de DivinĂłpolis, Minas Gerais. Para o levantamento dos dados, foram realizadas entrevistas com cinco enfermeiros. Os dados foram analisados pelo conteĂşdo, na modalidade temática. Os resultados demonstraram a necessidade de investimentos na formação de pessoal qualificado para o atendimento Ă mulher no ciclo gravĂdico-puerperal, assim como a criação e a incorporação de protocolos que promovam uma melhor interação do trabalho mĂ©dico e de enfermagem
- …