8 research outputs found

    Computational Approach to Identify new SNVs in ESTs Data Set

    No full text
    Indivíduos não relacionados apresentam apenas 1% de diferenças entre seus genomas. Estas variações ocorrem na forma de substituições, inserções, deleções, rearranjos complexos ou até estruturais. Dentre essas variações, aquelas que apresentam uma frequência populacional acima de 1% são denominadas de polimorfismos. Tais variações são responsáveis por diferenças que vão desde a resposta imunológica até o tratamento com drogas, incluindo sensitividade das células tumorais, níveis de plasma, efeitos colaterais e toxicidade. A forma mais comum de polimorfismo genético entre humanos são os polimorfismo de base única ou Single Nucleotide Polymorphisms (SNPs), sendo mais de 47 milhões descritos no dbSNP, um banco de dados de pequenos polimorfismos do NCBI. No presente estudo, foi estabelecida uma abordagem computacional, com etapas de exclusão de regiões parálogas ou de baixa qualidade, com o objetivo de identificar variantes genéticas em sequências expressas gerados pelo método de Open Reading Frame ESTs (ORESTES) durante o Projeto Genoma Humano do Câncer. Diferentemente de outros softwares de detecção de polimorfismos, a abordagem computacional descrita neste estudo leva em consideração a informação a priori do número de bibliotecas distintas que reportaram a mesma variação. Foram identificadas 1900 mutações (853 sinônimas e 1047 não-sinônimas) presentes em duas ou mais bibliotecas distintas, que foram validados in-silico contra o dbSNP v130. O resultado da análise identificou 901 mutações já descritas no dbSNP (47,42%). Para confirmação da análise, foram selecionadas 10 mutações (6 novas e 4 já presentes no dbSNP) para validação pelo método de High Resolution Melt (HRM), seguido da caracterização por sequenciamento de DNA. Nesse caso, o resultado foi a validação de 50% das mutações selecionadas. A análise de interação protéica, Protein-Protein Interaction (PPI), realizada com as mutações não-sinônimas localizadas em domínios funcionais, revelou redes gênicas mais complexas em tecidos tumorais do que nos tecidos normais. Esta observação ratificou a literatura a respeito da transformação tumorigênica ser desencadeada pela combinação de mutações que ativam uma série de processos biológicos, para isso, afetando genes, vias gênicas e networks de vias gênicas relacionados. Em resumo, o presente estudo descreve uma abordagem computacional eficiente para identificação de mutações em dados de sequências expressas, além de avaliar o papel das mutações na tumorigênese.Unrelated humans have only 1% of non-simularity in their genome. These variations occur as substitutions, insertions, deletions, or even complex structural rearrangements. Among these variations, those which show a population frequency above 1% are called polymorphisms. Such variations are responsible for differences ranging from the immune response to treatment with drugs, including sensitivity of tumor cells, plasma levels, toxicity and side effects. The most common form of genetic polymorphism among human are Single Nucleotide Polymorphisms (SNPs), with more than 47 million reported in dbSNP, a database of small polymorphisms from NCBI. In this study, we established a computational approach, with steps to exclude low quality and paralogous regions, aiming to identify genetic variants in expressed sequences generated by the method of Open Reading Frame ESTs (ORESTES) for the Human Cancer Genome Project. Unlike other polymorphisms detection softwares, the computational approach described in this study takes into account the a priori information about the number of different libraries that reported the same variation. We identified 1900 mutations (853 synonymous and 1047 nonsynonymous) present in two or more different libraries, these mutations were in-silico validated against the dbSNP V130. The analysis result showed 901 mutations already described in dbSNP (47.42%). To confirm the analysis, we selected 10 mutations (six new and four already present in dbSNP) for validation by the method of High Resolution Melt (HRM), followed by characterization by DNA sequencing. In this case, the result was the validation of 50 % of the selected mutations. The Protein-Protein Interaction analysis (PPI), performed with non-synonymous mutations located in functional domains, showed more complex gene networks in tumor tissues than in normal tissues. This observation confirmed the literature regarding the tumorigenic transformation is triggered by the combination of mutations that activate a number of biological processes, thereby, affecting genes, gene pathways and networks of related gene pathways. In summary, this study describes an efficient computational approach to identify mutations in expressed sequence data, besides to evaluate the role of mutations in tumorigenesis

    The transcriptome of oxygen-induced retinopathy and an angiogenesis-based prognostic gene signature for prediction of breast cancer relapse

    No full text
    Angiogênese é o processo de formação de novos vasos sanguíneos a partir dos vasos existentes. É um processo vital, mas muitas doenças também dependem deste mecanismo para obter nutrientes e progredir. Estas \"doenças dependentes de angiogênese\" incluem cânceres, retinopatias e degeneração macular. Alguns inibidores da angiogênese foram desenvolvidos na última década, com o objetivo de auxiliar no manejo dessas doenças e melhorar a qualidade de vida dos pacientes. A maioria destes compostos funciona inibindo a ligação de VEGFA/VEGFR2, que também é um elemento importante para a sobrevivência de células endoteliais quiescentes; e isso pode explicar parcialmente eventos adversos observados em alguns ensaios clínicos. Nossa hipótese é que a melhoria das terapias anti-angiogênicas depende de uma compreensão melhor e mais ampla desse processo, especialmente quando relacionada à progressão das doenças. Utilizando RNA-Seq e um modelo animal bem aceito de angiogênese, o modelo murino de Retinopatia Induzida por Oxigênio, exploramos o transcritoma e identificamos 153 genes diferencialmente expressos durante a angiogênese. Uma extensiva validação de vários genes realizada por qRT-PCR e hibridização in-situ confirmou a superexpressão de Esm1 em células endoteliais de tecidos com angiogênese ativa. A análise de enriquecimento desta lista de genes confirmou a ligação da angiogênese com genes frequentemente mutados em tumores, consistente com a conhecida ligação entre câncer e angiogênese, e forneceu sugestões de fármacos já aprovados que podem ser reutilizados para controlar a angiogênese em circunstâncias patológicas. Finalmente, com base neste panorama amplo da angiogênese, fomos capazes de criar um biomarcador molecular com poder prognóstico para a predição da recidiva de câncer de mama, com aplicações clínicas promissoras. Em resumo, este trabalho revelou com sucesso genes relacionados à angiogênese e forneceu novas alternativas terapêuticas, incluindo potenciais fármacos para reposicionamento. Esse conjunto de genes diferencialmente expressos é também um recurso valioso para investigações futuras.Angiogenesis is the process of formation of new blood vessels based on existing vessels. It is a vital process but many diseases also rely on this mechanism to get nourishment and progress. These so called angiogenesis-dependent diseases include cancers, retinopathies and macular degeneration. Some angiogenesis inhibitors were developed in the past decade, aiming to help the management of such diseases and improve patients quality of life. Most of these compounds work by inhibiting VEGFA/VEGFR2 binding, which is also a key element to the survival of quiescent endothelial cells; this may partly explain unanticipated adverse events observed in some clinical trials. We hypothesize that the improvement of anti-angiogenesis therapies hinges on a better and broader understanding of the process, especially when related to diseases\' progression. Using RNA-seq and a well accepted animal model of angiogenesis, the murine model of Oxygen Induced Retinopathy, we have explored the transcriptome landscape and identified 153 genes differentially expressed in angiogenesis. An extensive validation of several genes carried out by qRT-PCR and in-situ hybridization confirmed Esm1 overexpression in endothelial cells of tissues with active angiogenesis, providing confidence on the results obtained. Enrichment analysis of this gene list endorsed a narrow link of angiogenesis and frequently mutated genes in tumours, consistent with the known connection between cancer and angiogenesis, and provided suggestions of already approved drugs that may be repurposed to control angiogenesis under pathological circumstances. Finally, based on this comprehensive landscape of angiogenesis, we were able to create a prognostic molecular biomarker for prediction of breast cancer relapse, with promising clinical applications. In summary, this work successfully unveiled angiogenesis-related genes, providing novel therapeutic alternatives, including potential drugs for repositioning. The set of differentially expressed genes is also a valuable resource for further investigations

    Transcriptomes of Ralstonia solanacearum during Root Colonization of Solanum commersonii

    Get PDF
    Bacterial wilt of potatoes—also called brown rot—is a devastating disease caused by the vascular pathogen Ralstonia solanacearum that leads to significant yield loss. As in other plant-pathogen interactions, the first contacts established between the bacterium and the plant largely condition the disease outcome. Here, we studied the transcriptome of R. solanacearum UY031 early after infection in two accessions of the wild potato Solanum commersonii showing contrasting resistance to bacterial wilt. Total RNAs obtained from asymptomatic infected roots were deep sequenced and for 4,609 out of the 4,778 annotated genes in strain UY031 were recovered. Only 2 genes were differentially-expressed between the resistant and the susceptible plant accessions, suggesting that the bacterial component plays a minor role in the establishment of disease. On the contrary, 422 genes were differentially expressed (DE) in planta compared to growth on a synthetic rich medium. Only 73 of these genes had been previously identified as DE in a transcriptome of R. solanacearum extracted from infected tomato xylem vessels. Virulence determinants such as the Type Three Secretion System (T3SS) and its effector proteins, motility structures, and reactive oxygen species (ROS) detoxifying enzymes were induced during infection of S. commersonii. On the contrary, metabolic activities were mostly repressed during early root colonization, with the notable exception of nitrogen metabolism, sulfate reduction and phosphate uptake. Several of the R. solanacearum genes identified as significantly up-regulated during infection had not been previously described as virulence factors. This is the first report describing the R. solanacearum transcriptome directly obtained from infected tissue and also the first to analyze bacterial gene expression in the roots, where plant infection takes place. We also demonstrate that the bacterial transcriptome in planta can be studied when pathogen numbers are low by sequencing transcripts from infected tissue avoiding prokaryotic RNA enrichment.This work was funded by projects AGL2013-46898-R, AGL2016-78002-R, and RyC 2014-16158 from the Spanish Ministry of Economy and Competitiveness. We also acknowledge financial support from the “Severo Ochoa Program for Centres of Excellence in R&D” 2016-2019 (SEV-2015-0533) and the CERCA Program of the Catalan Government (Generalitat de Catalunya) and from COST Action SUSTAIN (FA1208) from the European Union. APM is funded by the Chinese Academy of Sciences and the Chinese 1000 Talents Program. MP holds an APIF doctoral fellowship from Universitat de Barcelona and received a travel fellowship allowed by Fundació Montcelimar and Universitat de Barcelona to carry out a short stay in JCS's lab. RGS holds a doctoral fellowship; grant 2012/15197-1, São Paulo Research Foundation (FAPESP) and JCS has a CNPq research fellowship.Peer Reviewe

    Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031

    No full text
    Ralstonia solanacearum is the causative agent of bacterial wilt of potato. Ralstonia solanacearum strain UY031 belongs to the American phylotype IIB, sequevar 1, also classified as race 3 biovar 2. Here we report the completely sequenced genome of this strain, the first complete genome for phylotype IIB, sequevar 1, and the fourth for the R. solanacearum species complex. In addition to standard genome annotation, we have carried out a curated annotation of type III effector genes, an important pathogenicity-related class of genes for this organism. We identified 60 effector genes, and observed that this effector repertoire is distinct when compared to those from other phylotype IIB strains. Eleven of the effectors appear to be nonfunctional due to disruptive mutations. We also report a methylome analysis of this genome, the first for a R. solanacearum strain. This analysis helped us note the presence of a toxin gene within a region of probable phage origin, raising the hypothesis that this gene may play a role in this strain’s virulence.We also thank COST action Sustain from the European Union for funding and Nemo Peeters and Stéphane Genin for hosting MP for a short stay to carry out UY031 effector annotation. RGS has a Ph.D. fellowship from FAPESP, Brazil. JCS has an investigator fellowship from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil.Peer reviewe

    Transcriptomes of Ralstonia solanacearum during Root Colonization of Solanum commersonii

    No full text
    Bacterial wilt of potatoes¿also called brown rot¿is a devastating disease caused by the vascular pathogen Ralstonia solanacearum that leads to significant yield loss. As in other plant-pathogen interactions, the first contacts established between the bacterium and the plant largely condition the disease outcome. Here, we studied the transcriptome of R. solanacearum UY031 early after infection in two accessions of the wild potato Solanum commersonii showing contrasting resistance to bacterial wilt. Total RNAs obtained from asymptomatic infected roots were deep sequenced and for 4,609 out of the 4,778 annotated genes in strain UY031 were recovered. Only 2 genes were differentially-expressed between the resistant and the susceptible plant accessions, suggesting that the bacterial component plays a minor role in the establishment of disease. On the contrary, 422 genes were differentially expressed (DE) in planta compared to growth on a synthetic rich medium. Only 73 of these genes had been previously identified as DE in a transcriptome of R. solanacearum extracted from infected tomato xylem vessels. Virulence determinants such as the Type Three Secretion System (T3SS) and its effector proteins, motility structures, and reactive oxygen species (ROS) detoxifying enzymes were induced during infection of S. commersonii. On the contrary, metabolic activities were mostly repressed during early root colonization, with the notable exception of nitrogen metabolism, sulfate reduction and phosphate uptake. Several of the R. solanacearum genes identified as significantly up-regulated during infection had not been previously described as virulence factors. This is the first report describing the R. solanacearum transcriptome directly obtained from infected tissue and also the first to analyze bacterial gene expression in the roots, where plant infection takes place. We also demonstrate that the bacterial transcriptome in planta can be studied when pathogen numbers are low by sequencing transcripts from infected tissue avoiding prokaryotic RNA enrichment

    Transcriptomes of Ralstonia solanacearum during root colonization of Solanum commersonii

    No full text
    Altres ajuts: The CERCA Program of the Catalan Government (Generalitat de Catalunya) and the COST Action SUSTAIN (FA1208) from the European Union.Bacterial wilt of potatoes-also called brown rot-is a devastating disease caused by the vascular pathogen Ralstonia solanacearum that leads to significant yield loss. As in other plant-pathogen interactions, the first contacts established between the bacterium and the plant largely condition the disease outcome. Here, we studied the transcriptome of R. solanacearum UY031 early after infection in two accessions of the wild potato Solanum commersonii showing contrasting resistance to bacterial wilt. Total RNAs obtained from asymptomatic infected roots were deep sequenced and for 4,609 out of the 4,778 annotated genes in strain UY031 were recovered. Only 2 genes were differentially-expressed between the resistant and the susceptible plant accessions, suggesting that the bacterial component plays a minor role in the establishment of disease. On the contrary, 422 genes were differentially expressed (DE) in planta compared to growth on a synthetic rich medium. Only 73 of these genes had been previously identified as DE in a transcriptome of R. solanacearum extracted from infected tomato xylem vessels. Virulence determinants such as the Type Three Secretion System (T3SS) and its effector proteins, motility structures, and reactive oxygen species (ROS) detoxifying enzymes were induced during infection of S. commersonii. On the contrary, metabolic activities were mostly repressed during early root colonization, with the notable exception of nitrogen metabolism, sulfate reduction and phosphate uptake. Several of the R. solanacearum genes identified as significantly up-regulated during infection had not been previously described as virulence factors. This is the first report describing the R. solanacearum transcriptome directly obtained from infected tissue and also the first to analyze bacterial gene expression in the roots, where plant infection takes place. We also demonstrate that the bacterial transcriptome in planta can be studied when pathogen numbers are low by sequencing transcripts from infected tissue avoiding prokaryotic RNA enrichment
    corecore