18 research outputs found
Gibeleko erradioenbolizazioaren CFD simulazioak: odolaren biskositatearen eragina gibeleko hemodinamikan eta mikroesferen banaketan
Radioembolization (RE) is a treatment for patients with liver cancer. RE consists of the infusion of radioactive microspheres in the hepatic artery using a microcatheter. Microspheres treat tumors by embolization and radiation. The trajectory of the microspheres can be analyzed using computational fluid dynamics simulations (CFD). The long duration of these calculations supposes a problem for their use in the clinical setting. To decrease the simulation time, blood, a non-Newtonian fluid, was considered as a Newtonian fluid. Results show that microsphere distribution and blood flow characteristics barely change when using a Newtonian fluid approach vs. a non-Newtonian fluid approach.; Erradioenbolizazioa (RE) gibeleko minbizia tratatzeko metodoetako bat da. Bertan, mikrokateter bidez gibeleko arterian mikroesfera erradioaktiboak injektatzen dira, tumoreei enbolizazio eta erradiazio bidez erasotzeko. Mikroesferen ibilbidea ordenagailu bidezko fluido dinamikako simulazioekin (CFD) azter daiteke. kalkulu horien iraupen luzea arazo bat da medikuntzaren egunerokotasunean simulazioak erabili ahal izateko. kalkuluak azkartzeko asmoz, odolaren biskositatearen izaera ez-newtondarra izaera newtondarrera sinplifikatu da. Emaitzek erakutsi dute mikroesferen banaketan eta odolaren hemodinamikan biskositate aldakorraren eragina baztergarria dela, odola fluido newtondar gisa aztertzearen sinplifikazioa ontzat emanez
Combination of KIR2DS4 and FcγRIIa polymorphisms predicts the response to cetuximab in KRAS mutant metastatic colorectal cancer
Cetuximab is a standard-of-care treatment for RAS wild-type metastatic colorectal cancer (mCRC) but not for those harbor a KRAS mutation since MAPK pathway is constitutively activated. Nevertheless, cetuximab also exerts its effect by its immunomodulatory activity despite the presence of RAS mutation. The aim of this study was to determine the impact of polymorphism FcγRIIIa V158F and killer immunoglobulin-like receptor (KIR) genes on the outcome of mCRC patients with KRAS mutations treated with cetuximab. This multicenter Phase II clinical trial included 70 mCRC patients with KRAS mutated. We found KIR2DS4 gene was significantly associated with OS (HR 2.27; 95% CI, 1.08–4.77; P = 0.03). In non-functional receptor homozygotes the median OS was 2.6 months longer than in carriers of one copy of full receptor. Multivariate analysis confirmed KIR2DS4 as a favorable prognostic marker for OS (HR 6.71) in mCRC patients with KRAS mutation treated with cetuximab. These data support the potential therapeutic of cetuximab in KRAS mutated mCRC carrying non-functional receptor KIR2DS4 since these patients significantly prolong their OS even after heavily treatment. KIR2DS4 typing could be used as predictive marker for identifying RAS mutated patients that could benefit from combination approaches of anti-EGFR monoclonal antibodies and other immunotherapies to overcome the resistance mediated by mutation in RAS.This clinical trial was approved and supported by Merck S.L., an affiliate of Merck KGaA, Darmstadt. Germany [research project number 2010-023580-18, date: 05-06-2014
Overcoming PLK1 inhibitor resistance by targeting mevalonate pathway to impair AXL-TWIST axis in colorectal cancer
© 2021 The Author(s).New therapeutic targets are revolutionizing colorectal cancer clinical management, opening new horizons in metastatic patients’ outcome. Polo Like Kinase1 (PLK1) inhibitors have high potential as antitumoral agents, however, the emergence of drug resistance is a major challenge for their use in clinical practice. Overcoming this challenge represents a hot topic in current drug discovery research. BI2536-resistant colorectal cancer cell lines HT29R, RKOR, SW837R and HCT116R, were generated in vitro and validated by IG50 assays and xenografts models by the T/C ratio. Exons 1 and 2 of PLK1 gene were sequenced by Sanger method. AXL pathway, Epithelial-to-Mesenchymal transition (EMT) and Multidrug Resistance (MDR1) were studied by qPCR and western blot in resistant cells. Simvastatin as a re-sensitizer drug was tested in vitro and the drug combination strategies were validated in vitro and in vivo. PLK1 gene mutation R136G was found for RKOR. AXL pathway trough TWIST1 transcription factor was identified as one of the mechanisms involved in HT29R, SW837R and HCT116R lines, inducing EMT and upregulation of MDR1. Simvastatin was able to impair the mechanisms activated by adaptive resistance and its combination with BI2536 re-sensitized resistant cells in vitro and in vivo. Targeting the mevalonate pathway contributes to re-sensitizing BI2536-resistant cells in vitro and in vivo, raising as a new strategy for the clinical management of PLK1 inhibitors.This study has been funded by Instituto de Salud Carlos III (ISCIII) -Fondos FEDER proyects PI16/01468 and PI19/01231
Del color de los ojos al interior del genoma. Nuevas tecnologías aplicadas a la educación: una experiencia en la enseñanza de la Genética
Depto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasFALSEsubmitte
An Updated Examination of the Perception of Barriers for Pharmacogenomics Implementation and the Usefulness of Drug/Gene Pairs in Latin America and the Caribbean
Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region’s continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the “need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics”. Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%–99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC
Un examen actualizado de la percepción de las barreras para la implementación de la farmacogenómica y la utilidad de los pares fármaco/gen en América Latina y el Caribe
La farmacogenómica (PGx) se considera un campo emergente en los países en desarrollo. La investigación sobre PGx en la región de América Latina y el Caribe (ALC) sigue siendo escasa, con información limitada en algunas poblaciones. Por lo tanto, las extrapolaciones son complicadas, especialmente en poblaciones mixtas. En este trabajo, revisamos y analizamos el conocimiento farmacogenómico entre la comunidad científica y clínica de ALC y examinamos las barreras para la aplicación clínica. Realizamos una búsqueda de publicaciones y ensayos clínicos en este campo en todo el mundo y evaluamos la contribución de ALC. A continuación, realizamos una encuesta regional estructurada que evaluó una lista de 14 barreras potenciales para la aplicación clínica de biomarcadores en función de su importancia. Además, se analizó una lista emparejada de 54 genes/fármacos para determinar una asociación entre los biomarcadores y la respuesta a la medicina genómica. Esta encuesta se comparó con una encuesta anterior realizada en 2014 para evaluar el progreso en la región. Los resultados de la búsqueda indicaron que los países de América Latina y el Caribe han contribuido con el 3,44% del total de publicaciones y el 2,45% de los ensayos clínicos relacionados con PGx en todo el mundo hasta el momento. Un total de 106 profesionales de 17 países respondieron a la encuesta. Se identificaron seis grandes grupos de obstáculos. A pesar de los continuos esfuerzos de la región en la última década, la principal barrera para la implementación de PGx en ALC sigue siendo la misma, la "necesidad de directrices, procesos y protocolos para la aplicación clínica de la farmacogenética/farmacogenómica". Las cuestiones de coste-eficacia se consideran factores críticos en la región. Los puntos relacionados con la reticencia de los clínicos son actualmente menos relevantes. Según los resultados de la encuesta, los pares gen/fármaco mejor clasificados (96%-99%) y percibidos como importantes fueron CYP2D6/tamoxifeno, CYP3A5/tacrolimus, CYP2D6/opioides, DPYD/fluoropirimidinas, TMPT/tiopurinas, CYP2D6/antidepresivos tricíclicos, CYP2C19/antidepresivos tricíclicos, NUDT15/tiopurinas, CYP2B6/efavirenz y CYP2C19/clopidogrel. En conclusión, aunque la contribución global de los países de ALC sigue siendo baja en el campo del PGx, se ha observado una mejora relevante en la región. La percepción de la utilidad de las pruebas PGx en la comunidad biomédica ha cambiado drásticamente, aumentando la concienciación entre los médicos, lo que sugiere un futuro prometedor en las aplicaciones clínicas de PGx en ALC.Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region’s continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the “need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics”. Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%–99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC
Combination of KIR2DS4 and FcγRIIa polymorphisms predicts the response to cetuximab in KRAS mutant metastatic colorectal cancer
Cetuximab is a standard-of-care treatment for RAS wild-type metastatic colorectal cancer (mCRC) but not for those harbor a KRAS mutation since MAPK pathway is constitutively activated. Nevertheless, cetuximab also exerts its effect by its immunomodulatory activity despite the presence of RAS mutation. The aim of this study was to determine the impact of polymorphism FcγRIIIa V158F and killer immunoglobulin-like receptor (KIR) genes on the outcome of mCRC patients with KRAS mutations treated with cetuximab. This multicenter Phase II clinical trial included 70 mCRC patients with KRAS mutated. We found KIR2DS4 gene was significantly associated with OS (HR 2.27; 95% CI, 1.08-4.77; P = 0.03). In non-functional receptor homozygotes the median OS was 2.6 months longer than in carriers of one copy of full receptor. Multivariate analysis confirmed KIR2DS4 as a favorable prognostic marker for OS (HR 6.71) in mCRC patients with KRAS mutation treated with cetuximab. These data support the potential therapeutic of cetuximab in KRAS mutated mCRC carrying non-functional receptor KIR2DS4 since these patients significantly prolong their OS even after heavily treatment. KIR2DS4 typing could be used as predictive marker for identifying RAS mutated patients that could benefit from combination approaches of anti-EGFR monoclonal antibodies and other immunotherapies to overcome the resistance mediated by mutation in RAS
A novel [89Zr]-anti-PD-1-PET-CT to assess response to PD-1/PD-L1 blockade in lung cancer
Background: Harnessing the anti-tumor immune system response by targeting the program cell death protein (PD-1) and program cell death ligand protein (PD-L1) axis has been a major breakthrough in non-small cell lung cancer (NSCLC) therapy. Nonetheless, conventional imaging tools cannot accurately assess response in immunotherapy-treated patients. Using a lung cancer syngeneic mouse model responder to immunotherapy, we aimed to demonstrate that [89Zr]-anti-PD-1 immuno-PET is a safe and feasible imaging modality to assess the response to PD-1/PD-L1 blockade in NSCLC.
Materials and methods: A syngeneic mouse model responder to anti-PD-1 therapy was used. Tumor growth and response to PD-1 blockade were monitored by conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) PET scans. Additionally, tumor lymphocyte infiltration was analyzed by the use of an [89Zr]-labeled anti-PD-1 antibody and measured as 89Zr tumor uptake.
Results: Conventional [18F]-FDG-PET scans failed to detect the antitumor activity exerted by anti-PD-1 therapy. However, [89Zr]-anti-PD-1 uptake was substantially higher in mice that responded to PD-1 blockade. The analysis of tumor-infiltrating immune cell populations and interleukins demonstrated an increased anti-tumor effect elicited by activation of effector immune cells in PD-1-responder mice. Interestingly, a positive correlation between [89Zr]-anti-PD-1 uptake and the proportion of tumor-infiltrating lymphocytes (TILs) was found (Cor = 0.8; p = 0.001).
Conclusion: Our data may support the clinical implementation of immuno-PET as a promising novel imaging tool to predict and assess the response of PD-1/PD-L1 inhibitors in patients with NSCLC
A novel [89Zr]-anti-PD-1-PET-CT to assess response to PD-1/PD-L1 blockade in lung cancer
Background: Harnessing the anti-tumor immune system response by targeting the program cell death protein (PD-1) and program cell death ligand protein (PD-L1) axis has been a major breakthrough in non-small cell lung cancer (NSCLC) therapy. Nonetheless, conventional imaging tools cannot accurately assess response in immunotherapy-treated patients. Using a lung cancer syngeneic mouse model responder to immunotherapy, we aimed to demonstrate that [89Zr]-anti-PD-1 immuno-PET is a safe and feasible imaging modality to assess the response to PD-1/PD-L1 blockade in NSCLC.
Materials and methods: A syngeneic mouse model responder to anti-PD-1 therapy was used. Tumor growth and response to PD-1 blockade were monitored by conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) PET scans. Additionally, tumor lymphocyte infiltration was analyzed by the use of an [89Zr]-labeled anti-PD-1 antibody and measured as 89Zr tumor uptake.
Results: Conventional [18F]-FDG-PET scans failed to detect the antitumor activity exerted by anti-PD-1 therapy. However, [89Zr]-anti-PD-1 uptake was substantially higher in mice that responded to PD-1 blockade. The analysis of tumor-infiltrating immune cell populations and interleukins demonstrated an increased anti-tumor effect elicited by activation of effector immune cells in PD-1-responder mice. Interestingly, a positive correlation between [89Zr]-anti-PD-1 uptake and the proportion of tumor-infiltrating lymphocytes (TILs) was found (Cor = 0.8; p = 0.001).
Conclusion: Our data may support the clinical implementation of immuno-PET as a promising novel imaging tool to predict and assess the response of PD-1/PD-L1 inhibitors in patients with NSCLC
Author Correction: Combination of KIR2DS4 and FcγRIIa polymorphisms predicts the response to cetuximab in KRAS mutant metastatic colorectal cancer (Scientific Reports, (2019), 9, 1, (2589), 10.1038/s41598-019-39291-2)
The original version of this Article contained an error in the spelling of the author P. Garcia-Alfonso, which was incorrectly given as P. Garcia. This error has now been corrected in the PDF and HTML versions of this Article