2,983 research outputs found

    A new young stellar cluster embedded in a molecular cloud in the far outer Galaxy

    Full text link
    We report the discovery of a new young stellar cluster and molecular cloud located in the far outer Galaxy, seen towards IRAS 06361-0142, and we characterise their properties. Near-infrared images were obtained with VLT/ISAAC through JHKs filters, millimetre line observations of CO(1-0) were obtained with SEST, and VLA 6 cm continuum maps obtained from archive data. The cloud and cluster are located at a distance of 7 kpc and a Galactocentric distance of 15 kpc, well in the far outer Galaxy. Morphologically, IRAS 06361-0142 appears as a cluster of several tens of stars surrounded by a nearly spherical nebular cavity centred at the position of the IRAS source. The cluster appears composed of low and intermediate-mass, young reddened stars with a large fraction having cleared the inner regions of their circumstellar discs responsible for (H - Ks) colour excess. The observations are compatible with a 4 Myr cluster with variable spatial extinction between Av = 6 and Av = 13.Comment: 6 pages, 6 figure

    Evolution induced by dry minor mergers onto fast-rotator S0 galaxies

    Get PDF
    We analysed collisionless N-body simulations of intermediate and minor dry mergers onto S0s to test whether these mergers can generate S0 galaxies with kinematics intermediate between fast and slow rotators. We find that minor mergers induce a lower decrease of the global rotational support than encounters of lower mass ratios, which results in S0s with properties intermediate between fast and slow rotators. The resulting remnants are intrinsically more triaxial, less flattened, and span the whole range of apparent ellipticities up to Ï”e∌0.8\epsilon_\mathrm{e} \sim 0.8. They do not show lower apparent ellipticities in random projections than initially; on the contrary, the formation of oval distortions and the disc thickening increase the percentage of projections at 0.4<Ï”e<0.70.4 < \epsilon_\mathrm{e} < 0.7. In the experiments with S0b progenitor galaxies, minor mergers tend to spin up the bulge and to decrease slightly its intrinsic ellipticity, whereas in the cases of primary S0c galaxies they keep the rotational support of the bulge nearly constant and decrease significantly its intrinsic ellipticity. The remnant bulges remain nearly spherical (B/A∌C/A>0.9B/A \sim C/A > 0.9), but exhibit a wide range of triaxialities (0.20<T<1.000.20 < T < 1.00). In the plane of global anisotropy of velocities (ÎŽ\delta) vs. intrinsic ellipticity (Ï”e,intr\epsilon_\mathrm{e,intr}), some of our models extend the linear trend found in previous major merger simulations towards higher Ï”e,intr\epsilon_\mathrm{e,intr} values, while others depart from it. This is consistent with the wide dispersion exhibited by real S0s in this diagram compared with ellipticals, which follow the linear trend drawn by major merger simulations. The different trends exhibited by ellipticals and S0 galaxies in the ÎŽ\delta - Ï”e\epsilon_\mathrm{e} diagram may be pointing to the different role played by major mergers in the build-up of each morphological type.Comment: Corrected typos. 20 pages, 14 figures. Accepted for publishing in A&

    The 2011 October Draconids outburst. I. Orbital elements, meteoroid fluxes and 21P/Giacobini-Zinner delivered mass to Earth

    Get PDF
    On October 8th, 2011 the Earth crossed the dust trails left by comet 21P/Giacobini-Zinner during its XIX and XX century perihelion approaches with the comet being close to perihelion. The geometric circumstances of that encounter were thus favorable to produce a meteor storm, but the trails were much older than in the 1933 and 1946 historical encounters. As a consequence the 2011 October Draconid display exhibited several activity peaks with Zenithal Hourly Rates of about 400 meteors per hour. In fact, if the display had been not forecasted, it could have passed almost unnoticed as was strongly attenuated for visual observers due to the Moon. This suggests that most meteor storms of a similar nature could have passed historically unnoticed under unfavorable weather and Moon observing conditions. The possibility of obtaining information on the physical properties of cometary meteoroids penetrating the atmosphere under low-geocentric velocity encounter circumstances motivated us to set up a special observing campaign. Added to the Spanish Fireball Network wide-field all-sky and CCD video monitoring, other high-sensitivity 1/2" black and white CCD video cameras were attached to modified medium-field lenses for obtaining high resolution orbital information. The trajectory, radiant, and orbital data of 16 October Draconid meteors observed at multiple stations are presented. The results show that the meteors appeared from a geocentric radiant located at R.A.=263.0+-0.4 deg. and Dec.=+55.3+-0.3 deg. that is in close agreement with the radiant predicted for the 1873-1894 and the 1900 dust trails. The estimated mass of material from 21P/Giacobini-Zinner delivered to Earth during the six-hours outburst was around 950+-150 kg.Comment: Manuscript in press in Monthly Notices of the Royal Astronomical Society, submitted to MNRAS on November 16th, 2012 Accepted for publication in MNRAS on April 28th, 2013 Manuscript Pages: 21 Tables: 8 Figures: 4 Manuscript associated: "The 2011 October Draconids outburst. II. Meteoroid chemical abundances from fireball spectroscopy" by J.M. Madiedo is also in press in the same journa

    The intrinsic shape of galaxy bulges

    Full text link
    The knowledge of the intrinsic three-dimensional (3D) structure of galaxy components provides crucial information about the physical processes driving their formation and evolution. In this paper I discuss the main developments and results in the quest to better understand the 3D shape of galaxy bulges. I start by establishing the basic geometrical description of the problem. Our understanding of the intrinsic shape of elliptical galaxies and galaxy discs is then presented in a historical context, in order to place the role that the 3D structure of bulges play in the broader picture of galaxy evolution. Our current view on the 3D shape of the Milky Way bulge and future prospects in the field are also depicted.Comment: Invited Review to appear in "Galactic Bulges" Editors: Laurikainen E., Peletier R., Gadotti D. Springer Publishing. 24 pages, 7 figure

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60∘60^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    Contributions of the Pierre Auger Collaboration to the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
    • 

    corecore