132 research outputs found

    Organic amendment optimization for treatment of hydrocarbon contaminated soil using the chemicalbiological stabilization process

    Get PDF
    Sugar cane cachasse was tested as an organic soil amendment at 0, 2, 4 and 9% (dry weight), for the remediation of hydrocarbon contaminated soil (with an average initial concentration of 14,356 mg/Kg), which had been pre-treated by the incorporation of 4% (dry weight) calcium hydroxide according to the chemical-biological stabilization treatment method. Remediation efficiency was measured in terms of overall hydrocarbon reduction, hydrocarbon stabilization, soil leachates, microbial activity, acute toxicity and biomass production in a tropical forage grass (Brachiaria humidicola). Compared to the control, the over all half life for hydrocarbon degradation was optimal with 2 - 4% cachasse, reducing the half life from 301 days to about 195 days. The treatment with 9% cachasse presented reduced respiration rates, probably due to fermentation conditions, and a longer half life. Hydrocarbon availability (versus stabilization), and thus potential toxicity and leachability, was lowest in the treatments with 4 and 9% cachasse. In these treatments, there were no methanol extractable hydrocarbons after 19 months, although the TPH concentration was 1,000 - 1,500 mg/kg. In less than four months, toxicity, as  determined by the Microtox method, was reduced to regional background levels (Effective Concentration 50 > 100,000 mg/L), and soil leachates (TCLP) were reduced to < 1 mg/L in all treatments. Grass biomass production was related to the amendment concentration, being two to three times greater in the treatment with 9% cachasse during the major part of the treatment. According to these results, a 4% application rate is recommended to optimize the microbial response, with an additional 4% added after one year to further stimulate pasture growth.Key words: Soil remediation, petroleum, biodegradation, toxicity, biomass production, pasture

    Automatic Test Case Generation from Functional Requirements in NDT

    Get PDF
    Navigational Development Techniques (NDT) is a Model-driven framework focused on defining Web requirements and obtaining related artefacts from them by means of transformations. Testing is one of the key elements in a software development process, however NDT neither include models to define artefacts nor transformations to obtain them from requirements. This paper presents how NDT improves with new models and transformations in order to generate test cases.Ministerio de Ciencia e Innovación TIN2010-20057-C03-02Ministerio de Ciencia e Innovación TIN2010-12312-EJunta de Andalucía TIC-578

    Measuring the Quality of Model-Driven Projects with NDT-Quality

    Get PDF
    Model-driven web engineering (MDWE) is a new paradigm which provides satisfactory results in the development of web software systems. However, as can be concluded from several research works, MDWE provokes traceability problems and the necessity of managing constraints in metamodel instances and transformation executions. The management of these aspects is usually executed manually in the most of MDWE approaches. Nevertheless, model-driven paradigm itself can offer suitable ways to manage them. This chapter presents NDT-Quality, an approach to measure the quality of web projects developed with NDT (navigational development techniques), and offers a view about the application of this tool in real web projects.Ministerio de Educación y Ciencia TIN2007-67843-C06-03Ministerio de Educación y Ciencia TIN2007-30391-

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Applying future Exascale HPC methodologies in the energy sector

    Get PDF
    The appliance of new exascale HPC techniques to energy industry simulations is absolutely needed nowadays. In this sense, the common procedure is to customize these techniques to the specific energy sector they are of interest in order to go beyond the state-of-the-art in the required HPC exascale simulations. With this aim, the HPC4E project is developing new exascale methodologies to three different energy sources that are the present and the future of energy: wind energy production and design, efficient combustion systems for biomass-derived fuels (biogas), and exploration geophysics for hydrocarbon reservoirs. In this work, the general exascale advances proposed as part of HPC4E and its outcome to specific results in different domains are presented.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imaging.Postprint (author's final draft

    Infection with chikungunya virus confers heterotypic cross-neutralizing antibodies and memory B-cells against other arthritogenic alphaviruses predominantly through the B domain of the E2 glycoprotein

    Get PDF
    Infections with Chikungunya virus, a mosquito-borne alphavirus, cause an acute febrile syndrome often followed by chronic arthritis that persists for months to years post-infection. Neutralizing antibodies are the primary immune correlate of protection elicited by infection, and the major goal of vaccinations in development. Using convalescent blood samples collected from both endemic and non-endemic human subjects at multiple timepoints following suspected or confirmed chikungunya infection, we identified antibodies with broad neutralizing properties against other alphaviruses within the Semliki Forest complex. Cross-neutralization generally did not extend to the Venezuelan Equine Encephalitis virus (VEEV) complex, although some subjects had low levels of VEEV-neutralizing antibodies. This suggests that broadly neutralizing antibodies elicited following natural infection are largely complex restricted. In addition to serology, we also performed memory B-cell analysis, finding chikungunya-specific memory B-cells in all subjects in this study as remotely as 24 years post-infection. We functionally assessed the ability of memory B-cell derived antibodies to bind to chikungunya virus, and related Mayaro virus, as well as the highly conserved B domain of the E2 glycoprotein thought to contribute to cross-reactivity between related Old-World alphaviruses. To specifically assess the role of the E2 B domain in cross-neutralization, we depleted Mayaro and Chikungunya virus E2 B domain specific antibodies from convalescent sera, finding E2B depletion significantly decreases Mayaro virus specific cross-neutralizing antibody titers with no significant effect on chikungunya virus neutralization, indicating that the E2 B domain is a key target of cross-neutralizing and potentially cross-protective neutralizing antibodies

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    Purpose: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. Methods: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015. Patients were stratified into three age groups:<65 years, 65 to 80 years, and = 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. Results: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 = 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients =80 years who underwent surgery were significantly lower compared with other age groups (14.3%, 65 years; 20.5%, 65-79 years; 31.3%, =80 years). In-hospital mortality was lower in the <65-year group (20.3%, <65 years;30.1%, 65-79 years;34.7%, =80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%, =80 years; p = 0.003).Independent predictors of mortality were age = 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI = 3 (HR:1.62; 95% CI:1.39–1.88), and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared, the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. Conclusion: There were no differences in the clinical presentation of IE between the groups. Age = 80 years, high comorbidity (measured by CCI), and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group
    corecore