
Automatic Test Case Generation
from Functional Requirements in NDT

Javier Gutiérrez, Gustavo Aragón, Manuel Mejías, Francisco Jose Domínguez Mayo,
and Carmen M. Ruiz Cutilla

IWT2 Research Group, University of Seville, Seville, Spain
{javierj,risoto,fjdominguez}@us.es,

{gustavo.aragon,carmen.ruiz}@iwt2.org

Abstract. Navigational Development Techniques (NDT) is a Model-driven
framework focused on defining Web requirements and obtaining related
artefacts from them by means of transformations. Testing is one of the key
elements in a software development process, however NDT neither include
models to define artefacts nor transformations to obtain them from
requirements. This paper presents how NDT improves with new models and
transformations in order to generate test cases.

1 Introduction

Model-Driven Engineering (MDE hereinafter) is a Software Engineering paradigm
focused on creating and exploiting domain models [19]. In the last years, this paradigm
was used in several domains of Software Engineering providing relevant results.

Web Engineering constitutes one of these domains [5]. Research groups are using
MDE for requirements treatment, design, development and several aspects of Web
development. This field is commonly named Model-Driven Web Engineering.

However, one of the less treated phases is the testing and validation phase. In the
survey presented in [5] relevant conclusions about the suitability of applying MDE in
this context are stated. This paper presents the application of MDE in a Web context.
It focuses on the first phases of the lifecycle and it studies how functional testing can
be deeply improved by means of early testing. Thus, this paper analyses an approach
that uses the MDE context and illustrates such uses in a concrete environment, NDT
approach (Navigational Development Techniques)[6].

NDT was initially defined to deal with Web development requirements, but it has
evolved in the last years and nowadays it offers a complete support for the complete
lifecycle. NDT covers viability study, requirements treatment, analysis, design,
construction or implementation as well as maintenance and test processes.
Additionally, it supports a set of processes to bear out project management and
quality assurance.

This paper describes how NDT has been extended to incorporate functional system
test cases. These test cases verify that the system under test commits the behaviour
defined in its functional requirement [12]. NDT models the functional requirements as
use cases, thus, both terms will be used as synonyms in this paper.

This paper is organised as follows. Section 2 introduces a motivating example from
a real project that enhances us to extend NDT. Then, section 3 cites related work
dealing with generating test cases from use cases. Section 4 puts forward how NDT
has been extended by means of metamodels and transformations so as to generate test
cases from use cases. Finally, Section 5 states the conclusions and ongoing work.

2 A Motivating Example

During 2.008, the IWT2 research group participated in a technological migration of
EMASESA information systems. EMASESA is a public company that manages the
urban water cycle, providing and ensuring water supply to all citizens in Seville.
IWT2 members’ collaborative work focused on using NDT for the quality
management of the methodological process.

AQUA-Web-Services project (also called AQUA-WS) consists in developing an
application of an integrated business system for customer management and
involvement in water distribution, cleaning, and net management. The software
system was composed of three subsystems, each one representing a legacy system.
There was a subsystem for managing the infrastructure of the pipe net, a subsystem
for managing clients and another one for managing the whole organization. The total
system includes 1.808 functional requirements, containing several scenarios and
alternatives in each functional requirement.

The use cases were defined by means of Enterprise Architect tool, linked to an
Oracle Database Server and a Subversion repository. This platform enables the
parallel work of several teams: developers of the two software factories implied,
EMASESA’s managers and the group who works in quality assurance.

Use cases were modelled using two techniques: UML Activity Diagrams and text
templates. Activities diagrams were modelled according to UML specifications. Text
templates were modelled according to the previous work developed by the IWT2
group on functional requirements [6].

The estimate amount of time needed to generate the package structure, elaborate
the test case suite that covers all scenarios from the functional requirements, design
those test cases in Enterprise Architect and trace them with the functional requirement
under test was vast. Estimating 5 minutes to create a test scenario in the modelling
tool, the amount of time gained with NDT-Tool was 583 hours (73 days working
eight hours a week). This was a big amount of time for a task that was repeated and
systematic, so this tool support was proposed.

During the AQUA-WS project improvement teams used a software prototype to
produce the test plan. This plan generated about 7,000 test cases from different
scenarios of the use case in a few minutes, by repeating the package structure of the
functional requirements and adding tracing relations to the functional requirements
under test.

3 Related Work

Several approaches in the literature study how to generate functional test cases
specifically from a functional requirements model defined as use cases. There are also
two surveys analysing the existing literature. The most recent survey, which updates
the original survey published in [4], has been published in [5] at the end of 2011.
Some specific approaches studied in Escalona’s survey are described in next
paragraphs.

Ruder’s [18] approach starts with functional requirements written in natural
language. The result is a set of functional test cases obtained from a coverage criterion
based on combinations that support Boolean propositions. Binder’s book [1] describes
the application of the Category-Partition Method in use cases. Categories are any
points in which the behaviour of the use case may be different between two
realizations of the use case. This application is named the Extended Use Case Pattern.
Finally, Ibrahim et-al. [8] offers a tool, called GenTCase, which generates test cases
automatically from a use case diagram enriched with each use case tabular text
description.

Frölich et-al. [7] introduces an approach describing how to translate a functional
requirement from natural language into a state-chart diagram in a systematic way, as
well as how to generate a set of functional test cases from that diagram. Naresh [13]
presents an approach dealing with translating a functional requirement from natural
language into a flow diagram and performing a path coverage technique to generate
test cases. Mogyorodi [10] introduces an approach analysing functional requirements
as cause-effect graphs that generate test cases from diagrams. Boddu et-al. [2]
presents an approach divided into two blocks: the first one describes a natural
language analyzer generating a state machine from functional requirements, and the
second one shows how to create test cases from such state machine.

Escalona’s survey claims that there is no definitive approach that closes the
problem of generating functional text cases automatically in a satisfactory way. Thus,
there are some aspects to be improved, for example, the use of standards for inputs
and outputs, the application of standards and more formal methods to describe the
process itself, the need for empirical results or measuring the possible automation and
a profitable tool supporting, among others. Conclusions of Denger’s survey goes in
the same line.

4 Extension of NDT

This section describes the extension of NDT with new metamodels and
transformations. Section 4.1 describes the two testing techniques used for generating
functional test cases identified in previous work (Section 3). Then, section 4.2
introduces the metamodel selected to define the results of the previous testing
techniques. Section 4.3 analyses both testing techniques as a set of relations between
previous models and their implementation in QVT code. Finally, section 4.4 describes
the implementation of the new transformations in the existing set of supporting tools
of NDT.

4.1 Techniques for Test Cases Generation

After mentioning the existing work in the previous section, it is worth mentioning that
there are two techniques emerging as the most important ones for generating test
cases from use cases: Round-Strip Strategy and Extended Use Cases (names given by
Binder in [1]). Both techniques are described in next paragraphs.

The Round-strip strategy consists in applying a classic algorithm of path-finding in a
state machine. The behaviour described in a functional requirement may be managed as
a graph or as a state machine despite its concrete syntax. Hence, a path searching allows
identifying all the different paths through behaviour. Each path will be a scenario
designed together with the system. At the same time, each scenario is a potential test
case for assessing the right implementation of such scenario in the tested system.
Generation of test cases from state-machines is a widely described topic in research
literature. Previous section presented several references about this topic in the specific
use cases context, like [7], [13] or [2]. Figure 1(a) shows an example of the Round-Strip
Strategy using the behaviour of a use case defined as an activity diagram.

(a) (b)

Fig. 1. Examples of Round-Strip Strategy (a) and Extended Use Cases (b) techniques

The Extended Use Case pattern consists in applying the Category-Partition Method
[17] to use cases. The Category-Partition Method is a technique based on identifying
categories and partitions to then generate combinations among such partitions (Figure
1(b)). In the context of functional requirements, a category is any point for which the
functional requirement defines an alternative behaviour (Figure 1 (b)). Besides, a
partition is defined as a subset of the domain of the condition evaluated in the
category which decides whether a concrete piece of behaviour is executed or not.
Once all categories and partitions are identified, a combination among them is
performed and each combination becomes a potential test case. The previous section
presented several references about this topic in the specific context of use cases, like
[18] or [1]. Figure 1(b) shows an example of the Category-Partition Method (as
described in [1]) using the same behaviour as Figure 1(a).

4.2 Metamodels

Due to the Model-driven nature of NDT, the concepts involved in functional test
cases should be identified and defined as metamodels. A metamodel defines the
concept in terms of its attributes and its relationships with other concepts [19]. Four
metamodels were designed. These metamodels are described in next paragraphs.

The first one (Figure 2) defines the necessary elements from functional
requirements to generate test cases. The Subsystem element represents a package or a
container for functional requirements and other related elements (as SysteActor).

The key concept in this metamodel is the FunctionalRequirement element. The
behaviour of a functional requirement is modelled using the elements Step and
ExecutionOrder. The Step element models a concrete chunk of behaviour of the
functional requirement, such as requesting information or calculating a result. The
ExecutionOrder element defines the order in which steps are executed. Using a
metaphor, the functional requirement may be seen as a finite-state machine (usually
called FSM), the steps as states and the execution order as the transition from one
state to another one.

 class Functional Requirement Metamodel

SystemActor

name: String
description: String

FunctionalRequirement

name: String
description: String
priority: String
notes: String [0..1]

Step

action: String
mainStep: Boolean

Subsystem

name: String
description: String

Constraint

value: String

ExecutionOrder

target

1

in

*

reference
*

referencedFR

0..1

source

1

out

*

executor 0..1

interaction 1..*

functionalRequirement

1

step

1..*
{ordered}

functionalRequirement
1..*

subsystem
1

postconditionFR

0..1

postcondition

*

preconditionFR

0..1

precondition

*

constraint

0..1

exceptionPoint

0..1

Fig. 2. Metamodel for Functional Requirements

The SystemActor element models an external entity that collaborates with the
system during the steps performance.

The introduction of additional functional requirements as part of the behaviour of a
functional requirement has been considered by using the relation reference-
referencedFR (from Step to FunctionalRequirement). This mechanism allows
defining the semantic expressed through inclusion and extension relations as defined
in UML Use Case metamodel.

The metamodel in Figure 2 directly matches with the functional requirement model
defined in NDT. This means that each functional requirement defined with NDT has
the concepts exposed in Figure 2, and it may be used with the transformations and
tools described in next sections.

The second metamodel (Figure 3) defines the concepts resulting from the Round-
Trip technique (Figure 1(a)). Each path is called test scenario (element TestScenario
in Figure 3) and the traverse steps are classified into actions, (element
ActionFromTestScenario in Figure 3) when performed by an external actor or into
verifications, (element VerificationFromTestScenario in Figure 3) when performed by
the system and, therefore, it is suitable to introduce a assert during the test.

 class Test scenarios

TestScenario

name: String
description: String
notes: String [0..1]

StepFromTestScenario

body: String

TestActor

name: String
description: String

VerificationFromTestScenarioActionFromTestScenario

testScenarioStep

1..* {ordered}

scenario

1..*

executor

1

interaction

1..*

{complete,
disjoint}

Fig. 3. Metamodel for test scenarios

The third metamodel (Figure 4) defines the concepts resulting from the Category-
Partition Method. Categories are modelled by means of the element
OperationalVariable (as named in [1]) whereas partitions are modelled through the
element Partition. The element Instance points out an evaluation of an operational
variable, for example A or B cells in Figure 1(b), and allows distinguishing it from
other evaluations of the same operational variable, in case the behaviour of the
functional requirement has loops. A Quantum element models a value transfer from a
partition into an instance. A combination (a row in Figure 1(b)) is modelled using the
element InstanceCombination.

Finally, the last metamodel introduces artifacts that combine the results of the two
previous techniques in the same model. This last metamodel does not introduce any
new information. However, it offers linking elements to represent the information
through a common artifact (called test case), the steps from a functional requirement
as well as a combination of partitions. Figure 5 shows the tracing relation between the
four metamodels. Tracing enables knowing which test artifacts have been generated
for each functional requirement.

 class Test Values

OperationalVariable

name: String
description: String
domain: String [0..1]
comments: String [0..1]

InstanceCombination

description: String [0..1]

DataPartition

name: String
description: String [0..1]
rangeOfValues: String [0..1]

Instance

Quantum

partition

1..*

subdomain

specific *

general
0..1

instance

1..*
{ordered}

operationalVariable

quantums

1..*

combination

1..*

quantum

1..*

instance
1

quantum

1..*

dataPartition

1

Fig. 4. Metamodel for test values

 class Dependencies

Functional Requirements Metamodel

Test Scenario Metamodel Test Values MetamodelTest Case Metamodel

«trace» «trace»«trace»

«trace» «trace»

Fig. 5. Tracing relationships among metamodels

Former metamodels have been added to the set of metamodels managed and
supported by NDT as part of its MDD development process.

4.3 Transformations and QVT

This section describes how to apply the two techniques presented in Section 2
(Round-Trip and Extended Use Cases) taking the information from functional
requirements metamodels (in the previous section) as a source and the information
from testing metamodels as a target.

The process of applying both techniques is analysed according to the identification
of a set of relations between source concepts (functional requirements) and target
concepts (test scenarios and operational variables combinations), as observed in
Figure 6. The task of identifying these relations consists in detecting how one target
element is built up, for example a test case, by means of the source elements and their
information. Next paragraphs provide an overview of the three relations (named T1,
T2 and T3 in Figure 6) defined to create test scenarios, combinations of operational
variables and test cases from functional requirements.

Fig. 6. Transformations among models

Relation T1 involves functional requirements and the Round-Strip strategy. As it
was represented in Figure 1(a), the functional requirement behaviour may be
modelled as a state-machine, the concept Step from Figure 2 models states, and the
concept ExecutionOrder models transitions. Thus, a classic coverage criterion may be
selected to traverse the functional requirement and generate test scenarios. The all-
loops criterion, in which all combinations among loops are traversed at least once, is
the one selected to extend NDT. Test scenarios steps are generated from all the
functional requirements steps. Action (element ActionFromTestScenario) and
verification (element VerificationFromTestScenario) classifications depend on
whether there is a relation with a system actor. Finally, test actors are generated from
actors, which, due to their attributes are the same ones.

Relation T2 in Figure 6 involves functional requirements and the Category-
Partition Method. Operational Variables are created from steps that have more than
one output transition (modelled as an ExecutionOrder element). The outputs of the
steps generate the different partition. Again, combinations may be calculated using
several criteria, ranged from calculating all possible solutions to calculating only a
subset.

Table 1. Metrics for QVT-Operational code

T0 T1 T2 T3

Total lines 124 118 290 170

Lines of codes 104 97 238 124

No. of Mappings 1 4 5 3

No. of Helpers 1 2 3 1

No. of Queries 3 2 1 3

No. of Input models 1 1 1 3

No. of Output models 1 1 1 1

Relation T3 (Figure 6) combines both techniques results. Test scenarios and
combinations of operational variables merge using test cases.

The relations stated in the previous paragraphs (T1, T2 and T3 from Figure 6) were
defined through QVT Operational language as a necessary step to know how to
implement the transformation process into an automatic tool. QVT code may be
downloaded from [20]. Metrics of QVT code are represented in Table 1 and defined
in [16].

Table 1 adds an additional transformation, called T0, not included in Figure 6. This
transformation contains common a code used in other transformations. As reference,
the Umls2Rdb transformation written in QVT Operational and included in the QVT
reference [15] has 65 lines of code, 6 mappings, and 1 query.

4.4 NDT Extension

Nowadays, several companies in Spain work with NDT. This is possible due to the
fact that NDT is completely supported by a set of free tools, mainly grouped in NDT-
Suite [9]. This suite enables the definition and use of every process and task supported
by NDT (Figure 1) and offers relevant resources for quality assurance, management
and metrics with the aim of developing software projects. The suite was also extended
to implement the first technique for test case generation using activity diagrams as the
concrete input for functional requirements, and for the concrete syntax of the test
scenarios generated. The implementation of the second technique is still an ongoing
work.

However, the MDD perspective allows the concrete notations independency. Thus,
the metamodels and transformations defined in previous section may be used out of
the scope of NDT. The only request is that the source functional requirements must
include the concepts defined in the functional requirements metamodel used as the
basis for the process. To remark this independency, a second tool, called MDETest
was created. The main differences between this tool and NDT-Suite are that MDETest
implements the three target metamodels and it generates the tool uses instances only
for metamodels, so that, it does not impose any restrictions on the concrete notations
of the functional requirements input. Nowadays, this tool supports activity diagrams
such as the syntax for functional requirements, although it does not support any
concrete syntax for the output. This tool is also available in [20].

5 Conclusions and Ongoing Work

This paper presents an extension of NDT, based on metamodels and transformations,
with the aim of generating test cases from functional requirements. The extension has
been tested in several projects and it opens new research lines. Firstly, we have to
work in test cases prioritization mechanisms, consisting in giving relevance to
functional requirements, as well as in redundant test cases detection. The practice
concludes that it continues producing a high number of redundant test cases that the
test teams have to detect by hand. One last ongoing work would deal with supporting
the semantic of the inclusion and extension relations defined in UML [14] for use
cases.

Acknowledgements. This research has been supported by the Tempros project
(TIN2010-20057-C03-02) and Red CaSA (TIN 2010-12312-E) of the Ministerio de
Ciencia e Innovación, Spain, and NDTQ-Framework project of the Junta de
Andalucía, Spain (TIC-5789).

References
[1] Binder, R.V.: Testing Object-Oriented Systems. Addison Wesley (1999)
[2] Boddu, R., Guo, L., Mukhopadhyay, S.: RETNA: From Requirements to Testing in

Natural Way. In: 12th IEEE International Requirements Engineering, RE 2004 (2004)
[3] Cutilla, C.R., García-García, J.A., Alba, M., Escalona, M.J., Rodríguez-Catalán, L.:

Aplicación del paradigma MDE para la generación de pruebas funcionales. In:
Experiencia Dentro del Proyecto AQUA-WS, ATSE 2011, Chaves, Portugal (2011)

[4] Denger, C., Medina, M.: Test Case Derived from Requirement Specifications. Fraunhofer
IESE Report, Germany (2003)

[5] Escalona, M.J., Gutiérrez, J.J., Mejías, M., Aragón, G., Ramos, I., Torres, J., Domínguez,
F.J.: An Overview on Test Generation from Functional Requirements. The Journal of
Systems and Software (2011)

[6] Escalona, M.J., Aragón, G.: NDT. A Model-Driven Approach for Web Requirements.
IEEE Transaction on Software Engineering 34(3), 370–390 (2008)

[7] Fröhlich, P., Link, J.: Automated Test Case Generation from Dynamic Models. In:
Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 472–491. Springer, Heidelberg
(2000)

[8] Ibrahim, R., Saringat, M.Z., Ibrahim, N., Ismail, N.: An Automatic Tool for Generating
Test Cases from the System’s Requirements. In: 7th International Conference on
Computer and Information Technology, Fukushima, Japan (2007)

[9] García-García, J.A., Cutilla, C.R., Escalona, M.J., Alba, M., Torres, J.: NDT-Driver, a
Java Tool to Support QVT Transformations for NDT. In: 20th International Conference
on Information Systems Development, Edinburgh, Scotland, August 24-26 (2011)

[10] Mogyorodi, G.E.: What Is Requirements-Based Testing? In: 15th Annual Software
Technology Conference, Salt Lake City, USA, April 28-May 1

[11] Gutiérrez, J.J., Nebut, C., Escalona, M.J., Mejías, M., Ramos, I.M.: Visualization of Use
Cases through Automatically Generated Activity Diagrams. In: Czarnecki, K., Ober, I.,
Bruel, J.-M., Uhl, A., Völter, M. (eds.) MoDELS 2008. LNCS, vol. 5301, pp. 83–96.
Springer, Heidelberg (2008)

[12] Myers, G.: The Art of Software Testing, 2nd edn. Addison-Wesley, USA (2004)
[13] Naresh, A.: Testing From Use Cases Using Path Analysis Technique. In: International

Conference on Software Testing Analysis & Review (2002)
[14] Object Management Group, Unified Modelling Language 2.4 (2011),

http://www.omg.org (last visit June 24, 2011)
[15] Object Management Group. Query View Transformation Specification 1.0 (2010),

http://www.omg.org (last visit June 24, 2011)
[16] Kapová, L., Goldschmidt, T., Becker, S., Henss, J.: Evaluating Maintainability with Code

Metrics for Model-to-Model Transformations. In: Heineman, G.T., Kofron, J., Plasil, F.
(eds.) QoSA 2010. LNCS, vol. 6093, pp. 151–166. Springer, Heidelberg (2010)

[17] Ostrand, T.J., Balcer, M.J.: Category-Partition Method. Communications of the ACM,
676–686 (1988)

[18] Ruder, A.: UML-based Test Generation and Execution. Rückblick Meeting, Berlin (2004)
[19] Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2)

(2006)
[20] Supporting web, http://www.iwt2.org/mdetest (last updated April 15, 2012)

	Automatic Test Case Generation from Functional Requirements in NDT
	Introduction
	A Motivating Example
	Related Work
	Extension of NDT
	Techniques for Test Cases Generation
	Metamodels
	Transformations and QVT
	NDT Extension

	Conclusions and Ongoing Work
	References

