530 research outputs found

    The loess-paleosol sequence at Monte Netto: a record of climate change in the Upper Pleistocene of the central Po Plain, northern Italy

    Get PDF
    Purpose At the northern fringe of the Po Plain (northern Italy), several isolated hills exist, corresponding to the top of Late Quaternary anticlines. These hills were thoroughly surveyed for their soils and surficial geology, furnishing detailed archives of the palaeoenvironmental evolution of the area. A new, thick and complex loess-paleosol sequence, resting upon fluvial/fluvioglacial deposits, exposed in a quarry at the top of the Monte Netto hill was studied in detail to elucidate its significance. Materials and methods Highly deformed fluvial and fluvioglacial deposits, probably of Middle Pleistocene age, are exposed in a clay pit at Monte Netto, underneath a 2- to 4-m-thick loess-paleosol sequence. A geopedological, sedimentological and micropedological investigation of the sequence shows a distinctive difference between the B horizons forming the sequence, while luminescence and radiocarbon age determinations and the occurrence of Palaeolithic lithic assemblages elucidate the chronology of the sequence. Results and discussion The pedosedimentary sequence consists of several loess layers showing different degrees of alteration; loess deposition and weathering occurred, according to optically stimulated luminescence (OSL) and AMS-14C dating as well as archaeological materials, during the Upper Pleistocene. The lower part of the section consists of strongly weathered colluvial sediments overlying fluvial and fluvioglacial sediments. A tentative model of the exposed profiles involves the burial of the anticline, which forms the core of the hill, by loess strata since Marine Isotopic Stage (MIS) 4 and their subsequent weathering (and truncation) during subsequent interstadials. The degree of weathering of buried B horizons increases from the top of the sequence toward the bottom, suggesting a progressive decrease in the intensity of pedogenesis. Finally, the highly rubified paleosol at the top of the hill is regarded as a buried polygenetic soil or a vetusol, developed near the surface since the Middle Pleistocene. Conclusions The palaeopedological, geochronological and geoarchaeological analyses permit to define the phases and steps of development of the Monte Netto pedosedimentary sequence; the lower part of the sequence is dated to the Mid-Pleistocene, whereas loess accumulation occurred between MIS 4 and MIS 2. Moreover, analyses help to clarify the climatic and environmental context of alternating glacial and interstadial phases, during which the sediments where deposited, deformed and weathered

    Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic-ischemic brain

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in the astrocyte cytoskeleton that plays an important role in the structure and function of the cell. GFAP can be phosphorylated at six serine (Ser) or threonine (Thr) residues but little is known about the role of GFAP phosphorylation in physiological and pathophysiological states. We have generated antibodies against two phosphorylated GFAP (pGFAP) proteins: p8GFAP, where GFAP is phosphorylated at Ser-8 and p13GFAP, where GFAP is phosphorylated at Ser-13. We examined p8GFAP and p13GFAP expression in the control neonatal pig brain and at 24 and 72 h after an hypoxic-ischemic (HI) insult. Immunohistochemistry demonstrated pGFAP expression in astrocytes with an atypical cytoskeletal morphology, even in control brains. Semi-quantitative western blotting revealed that p8GFAP expression was significantly increased at 24 h post-insult in HI animals with seizures in frontal, parietal, temporal and occipital cortices. At 72 h post-insult, p8GFAP and p13GFAP expression were significantly increased in HI animals with seizures in brain regions that are vulnerable to cellular damage (cortex and basal ganglia), but no changes were observed in brain regions that are relatively spared following an HI insult (brain stem and cerebellum). Increased pGFAP expression was associated with poor neurological outcomes such as abnormal encephalography and neurobehaviour, and increased histological brain damage. Phosphorylation of GFAP may play an important role in astrocyte remodelling during development and disease and could potentially contribute to the plasticity of the central nervous system

    Revealing the pace of river landscape evolution during the Quaternary: recent developments in numerical dating methods

    Get PDF
    During the last twenty years, several technical developments have considerably intensified the use of numerical dating methods for the Quaternary. The study of fluvial archives has greatly benefited from these enhancements, opening new dating horizons for a range of archives at distinct time scales and thereby providing new insights into previously unanswered questions. In this contribution, we separately present the state of the art of five numerical dating methods that are frequently used in the fluvial context: radiocarbon, Luminescence, Electron Spin Resonance (ESR), 230Th/U and terrestrial cosmogenic nuclides (TCN) dating. We focus on the major recent developments for each technique that are most relevant for new dating applications in diverse fluvial environments and on explaining these for non-specialists. Therefore, essential information and precautions about sampling strategies in the field and/or laboratory procedures are provided. For each method, new and important implications for chronological reconstructions of Quaternary fluvial landscapes are discussed and, where necessary, exemplified by key case studies. A clear statement of the current technical limitations of these methods is included and forthcoming developments, which might possibly open new horizons for dating fluvial archives in the near future, are summarised

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44628/1/10803_2005_Article_BF01537729.pd
    corecore