149 research outputs found

    KUALITAS PEWARNAAN KAYU SENGON (PARASERIANTHES FALCATARIA (L). NIELSEN) DENGAN MENGGUNAKAN EKSTRAK KULIT BUAH MANGGIS, KULIT KAYU AKASIA DAN KULIT KAYU BAKAU

    Get PDF
    The usage of wood is not limited to household appliances but also used wood for the exterior. Wood have a high decorative value because of its color and fiber pattern. Wood decorative value increase the economic value of wood. Sengon (Paraserianthes Falcataria (L). Nielsen), one of wood species which not have interesting pattern and color thus through this research dyeing process conducted to know the optimum concentration of Sengon staining by using several natural extract such as the rind of Mangstosteen fruit (Garcinia mangostana L.), bark of Acacia mangium and Mangrove tree bark. There were four level of concentration used 5%, 10% , 15% and 20%. The result showed that the highest extract yield percentage derived from A. mangium bark followed by mangrove bark and mangoosten fruit rind (32.67%, 29.09% and 28.37 respectively). While for pH value, mangoosteen fruit rind extract have the highest value followed by mangove bark extract and A. Mangium bark (5.8-6, 5-7 and 5-5.2 respectively). The highest absorbance value derived from A. Mangium bark extract followed by mangosteen fruit rind extract and mangrove bark extract (0.715 ppm, 0.476 ppm and 0.439 ppm respectively). A. Mangium bark extract also shown the highest absorbance followed by mangrove bark extract and mangosteen fruit rind (0.699 ppm, 0.477 ppm and 0.4 ppm) in 478 nm wavelength with 800C. Dyeing process with mangosteen fruit rind extract with 20% concentration resulted highest retention value (9.064 kg/m3) while for the brightness resulted from 10% concentration. Kaywords: A.mangium, Mangrove bark and Mangosteen fruit rind, Natural dye, Sengon

    Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity

    Get PDF
    Myocardial infarction (MI) is a leading cause of death worldwide. Reperfusion is considered as an optimal therapy following cardiac ischemia. However, the promotion of a rapid elevation of O2 levels in ischemic cells produces high amounts of reactive oxygen species (ROS) leading to myocardial tissue injury. This phenomenon is called ischemia reperfusion injury (IRI). We aimed at identifying new and effective compounds to treat MI and minimize IRI. We previously studied heart regeneration following myocardial injury in zebrafish and described each step of the regeneration process, from the day of injury until complete recovery, in terms of transcriptional responses. Here, we mined the data and performed a deep in silico analysis to identify drugs highly likely to induce cardiac regeneration. Fisetin was identified as the top candidate. We validated its effects in an in vitro model of MI/IRI in mammalian cardiac cells. Fisetin enhances viability of rat cardiomyocytes following hypoxia/starvation - reoxygenation. It inhibits apoptosis, decreases ROS generation and caspase activation and protects from DNA damage. Interestingly, fisetin also activates genes involved in cell proliferation. Fisetin is thus a highly promising candidate drug with clinical potential to protect from ischemic damage following MI and to overcome IRI.This work was supported by FNR, the Luxembourg National Research Fund, FNR-CORE INFUSED project. At the NorLux Laboratory and the Proteome and Genome Research Unit of LIH, it was also supported by funding from Luxembourg’s Ministry of Higher Education and Research (MESR).S

    Transcriptional response to cardiac injury in the zebrafish: systematic identification of genes with highly concordant activity across in vivo models

    Get PDF
    Background: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. Results: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. Conclusions: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-852) contains supplementary material, which is available to authorized users

    Analysis of the dynamic co-expression network of heart regeneration in the zebrafish.

    Get PDF
    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration

    Pan-claudin family interactome analysis reveals shared and specific interactions

    Get PDF
    Claudins are a family of transmembrane proteins expressed in epithelial tissues and are the major components of tight junctions (TJs), which define barrier properties in epithelia and maintain cell polarity. How claudins regulate the formation of TJs and which functions they exert outside of them is not entirely understood. Although the long and unstructured C-terminal tail is essential for regulation, it is unclear how it is involved in these functions beyond interacting with TJ-associated proteins such as TJ protein ZO-1 (TJP1). Here, we present an interactome study of the pan-claudin family in Madin-Darby canine kidney (MDCK)-C7 cells by combining two complementary mass spectrometry-based pull-down techniques creating an interaction landscape of the entire claudin family. The interaction partners of the claudins' C termini reveal their possible implications in localized biological processes in epithelial cells and their regulation by post-translational modifications (PTMs)

    Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers.</p> <p>Methods</p> <p>Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months.</p> <p>Results</p> <p>In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months.</p> <p>Conclusions</p> <p>We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.</p
    corecore