1,869 research outputs found

    Potential Economic Consequences of Local Nonconformity to Regional Land Use and Transportation Plans Using a Spatial Economic Model

    Get PDF
    To achieve the greenhouse gas (GHG) reduction targets that are required by California’s global warming legislation (AB32), the state of California has determined that recent growth trends in vehicle miles traveled (VMT) must be curtailed. In recognition of this, Senate Bill 375 (SB375) requires regional governments to develop land use and transportation plans or Sustainable Community Strategies (SCSs) that will achieve regional GHG targets largely though reduced VMT. Although the bill requires such a plan, it does not require local governments to adopt general plans that conform to this plan. In California, it is local, not regional, governments that have authority over land development decisions. Instead, SB375 relies on democratic participatory processes and relatively modest financial and regulatory incentives for SCS implementation. As a result, it is quite possible that some local governments within a region may decide not to conform to their SCS. In this study, a spatial economic model (PECAS) is applied in the Sacramento region (California, U.S.) to understand what the economic and equity consequences might be to jurisdictions that do and do not implement SCS land use plans in a region. An understanding of these consequences provides insight into jurisdictions’ motivations for compliance and thus, strategies for more effective implementation of SB375

    Cocoa Butter Saturated with Supercritical Carbon Dioxide: Measurements and Modelling of Solubility, Volumetric Expansion, Density and Viscosity

    Get PDF
    International audienceThe use of supercritical carbon dioxide technology for lipid processing has recently developed at the expense of traditional processes. For designing new processes the knowledge of thermophysical properties is a prerequisite. This work is focused on the characterization of physical and thermodynamic properties of CO2-cocoa butter (CB) saturated mixture. Measurements of density, volumetric expansion, viscosity and CO2 solubility were carried out on CB-rich phase at 313 and 353 K and pressures up to 40 MPa. The experimental techniques have previously been compared and validated. Density measurements of CB and CB saturated with CO2, were performed using the vibrating tube technology at pressures ranging from 0.1 to 25 MPa. Experimental values correlated well with the modified Tait equation. CO2 solubility measurements were coupled to those of density in the same pressures ranges. At 25 MPa, the solubility of CO2 is 31.4 % and 28.7 % at 313 and 353 K. Phase behaviour was investigated using a view cell in order to follow the expansion of the CB-rich phase with the rise in pressure. Volumetric expansion up to 47 % was measured and correlated to the CO2 solubility. Phase inversion was observed at 313 K and 40 MPa. Lastly, we developed an innovative falling ball viscometer for high pressure measurements. Viscosity measurements were carried out up to 25 MPa showing a viscosity reduction up to 90 % upon CO2 dissolution. These results were correlated with two empirical models. A new model here presented, was favourably compared with the Grunberg and Nissan model. All the experimental results are consistent with the available literature data for the CB-CO2 mixture and other fat systems. This work is a new contribution to the characterization of physical and thermodynamic behaviour of fats in contact with CO2 which is necessary to design supercritical fluid processes for fats processing

    Ultra-high Q/V Fabry-Perot microcavity on SOI substrate

    Get PDF
    International audienceWe experimentally demonstrate an ultra high Q/V nanocavity on SOI substrate. The design is based on modal adaptation within the cavity and allows to measure a quality factor of 58.000 for a modal volume of 0.6(λ/n)3. This record Q/V value of 105 achieved for a structure standing on a physical substrate, rather than on membrane, is in very good agreement with theoretical predictions also shown. Based on these experimental results, we show that further refinements of the cavity design could lead to Q/V ratios close to 106

    STUDY OF THE MICROWAVE VACUUM DRYING PROCESS FOR A GRANULATED PRODUCT

    Get PDF
    The objectives of this work were to study and evaluate the process of drying a pharmaceutical granule from 21% to 3% (d.b.) moisture, also determining the power absorbed by the product, using a microwave assisted vacuum dryer with two absolute pressures: 50 and 75 mbar. A specific objective was to compare the drying kinetics of the microwave assisted vacuum process (MAVP) with two other drying processes, one using hot air convection and the other combining microwaves with hot air convection. The results of such a study showed that the drying kinetics were not affected by the vacuum levels, whereas the absorbed microwave power was higher for smaller vacuum levels. It was also observed that the samples obtained by the microwave assisted vacuum process, when submitted to compression, complied with the required specifications. The drying kinetics of the MAVP showed the shortest drying times when compared to the other drying processes.26231732

    Radiative Effects of African Dust and Smoke Observed from CERES and CALIOP Data

    Get PDF
    Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the Tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the Tropical Atlantic Ocean were analyzed for the month of July for three years (2006-2008) using collocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth s Radiant Energy System (CERES) instruments on the CALIPSO and Aqua satellites. Aerosol layer height and type can be more accurately determined using CALIOP data, through parameters such as cloud and aerosol layer height, optical depth and depolarization ratio, than data from atmospheric imagers used in previous cloud-aerosol interaction studies. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 +/- 16.9 W/sq m and thin cirrus clouds had a SW radiative flux of 208.0 +/- 12.7 W/sq m. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 +/- 13.0 W/sq m. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 +/- 16.6 W/sq m. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system

    Three Corner Sat Constellation - New Mexico State University: Communications, LEO Telecommunications Services, Intersatellite Communications, and Ground Stations and Network

    Get PDF
    The Three Corner Satellite Constellation is part of the AFOSRlDARP A University Nanosatellite program. This project is a joint effort among Arizona State University (ASU), University of Colorado at Boulder (CU), and New Mexico State University (NMSU). The constellation will consist of three identical nanosatellites, that will demonstrate stereo imaging, innovative command and data handling, and formation flying with RF communications and a possibility of cellular phone communications through LEO telecommunications satellites. To achieve mission objectives, the satellites in the constellation and the ground communications network will need to be designed as a cooperative communications and control network that will allow the satellites in the constellation to form a virtual formation. In this paper, we will present the necessary communications and control architecture for the space segment and the ground segment to form this virtual formation that are NMSU\u27s responsibility in the program. Companion papers describe the respective areas of responsibility of the other partners: ASU -Project Management; Electrical Power System; Structures, Mechanisms, Thermal, and Radiation; Attitude/Orbit Determination and Control; Micropropulsion experiment; and ‱ Integration; CU -- Command & Data Handling, Distributed Operations, Stereoscopic Imaging, Science Operations, and Spacecraft Operations

    Surface plasmons of metallic surfaces perforated by nanoholes

    Full text link
    Recent works dealt with the optical transmission on arrays of subwavelength holes perforated in a thick metallic film. We have performed simulations which quantitatively agree with experimental results and which unambiguously evidence that the extraordinary transmission is due to the excitation of a surface-plasmon-polariton (SPP) mode on the metallic film interfaces. We identify this SPP mode and show that its near-field possesses a hybrid character, gathering collective and localised effects which are both essential for the transmission.Comment: 16 pages, 4 figure

    Development of Characterization Techniques of Thermodynamic and Physical Properties Applied to the CO2-DMSO Mixture

    Get PDF
    International audienceThis work is focused on the development of new characterization techniques of physical and thermodynamic properties. These techniques have been validated using the binary system DMSO-CO2 for which several studies of characterization have been well documented. We focused on the DMSO-rich phase and we carried out measurements of volumetric expansion, density, viscosity and CO2 solubility at 298.15, 308.15 and 313.15 K and pressures up to 9 MPa. The experimental procedures were compared and validated with the available literature data on SC-CO2-DMSO system. We made density and CO2 solubility measurements, using respectively the vibrating tube technology and two static analytical methods. Lastly, we developed an innovative falling body viscosimeter for high pressure measurements. All the measurements made are in good agreement with the already published data in spite of very different experimental techniques. This work is a contribution to the understanding of the DMSO-CO2 binary as it implements new viscosity data. Moreover, it opens new perspectives about the determination of the properties of other systems such as polymers-CO2 and fats-CO2, which are essential for supercritical process design such as extraction, crystallization, chromatography and synthesis reaction

    Wicked social–ecological problems forcing unprecedented change on the latitudinal margins of coral reefs: the case of southwest Madagascar

    Get PDF
    High-latitude coral reefs may be a refuge and area of reef expansion under climate change. As these locations are expected to become dryer and as livestock and agricultural yields decline, coastal populations may become increasingly dependent on marine resources. To evaluate this social–ecological conundrum, we examined the Grand RĂ©cif of Toliara (GRT), southwest Madagascar, which was intensively studied in the 1960s and has been highly degraded since the 1980s. We analyzed the social and ecological published and unpublished literature on this region and provide new data to assess the magnitude of the changes and evaluate the causes of reef degradation. Top-down controls were identified as the major drivers: human population growth and migrations, overfishing, and climate change, specifically decreased rainfall and rising temperature. Water quality has not changed since originally studied, and bottom-up control was ruled out. The identified network of social–ecological processes acting at different scales implies that decision makers will face complex problems that are linked to broader social, economic, and policy issues. This characterizes wicked problems, which are often dealt with by partial solutions that are exploratory and include inputs from various stakeholders along with information sharing, knowledge synthesis, and trust building. A hybrid approach based on classical fishery management options and preferences, along with monitoring, feedback and forums for searching solutions, could move the process of adaptation forward once an adaptive and appropriately scaled governance system is functioning. This approach has broad implications for resources management given the emerging climate change and multiple social and environmental stresses
    • 

    corecore