19 research outputs found

    Site-Dependent Regulation of Population Size: a New Synthesis

    Get PDF
    The nature and extent of population regulation remains a principal unanswered question for many types of organisms, despite extensive research. In this paper, we provide a new synthesis of theoretical and empirical evidence that elucidates and extends a mechanism of population regulation for species whose individuals preemptively use sites that differ in suitability. The sites may be territories, refuges from predation, oviposition sites, etc. The mechanism, which we call site dependence, is not an alternative to density dependence; rather, site dependence is one of several mechanisms that potentially generate the negative feedback required for regulation. Site dependence has two major features: (1) environmentally caused heterogeneity among sites in suitability for reproduction and/or survival; and (2) preemptive site occupancy, with the tendency for individuals to move to sites of higher quality as they become available. Simulation modeling shows that these two features, acting in concert, generate negative feedback when progressively less suitable sites are used as population size increases, reducing average demographic rates for the population as a whole. Further, when population size decreases, only sites of high suitability are occupied, resulting in higher average demographic rates and, thus, population growth. The modeling results demonstrate that this site‐dependent mechanism can generate negative feedback at all population sizes in the absence of local crowding effects, and that this feedback is capable of regulating population size tightly. Operation of site dependence does not rely on the particular type of environmental factor(s) ultimately limiting population size, e.g., food, nest sites, predators, parasites, abiotic factors, or a combination of these. Furthermore, site dependence operates in saturated or unsaturated habitats and over a broad range of spatial scales for species that disperse widely relative to site diameter. A review of relevant field studies assessing the assumptions of the mechanism and its regulatory potential suggests that site dependence may provide a general explanation for population regulation in a wide variety of species

    Warm Springs, Early Lay Dates, and Double Brooding in a North American Migratory Songbird, the Black-Throated Blue Warbler

    Get PDF
    Numerous studies have correlated the advancement of lay date in birds with warming climate trends, yet the fitness effects associated with this phenological response have been examined in only a small number of species. Most of these species–primarily insectivorous cavity nesters in Europe–exhibit fitness declines associated with increasing asynchrony with prey. Here, we use 25 years of demographic data, collected from 1986 to 2010, to examine the effects of spring temperature on breeding initiation date, double brooding, and annual fecundity in a Nearctic - Neotropical migratory songbird, the black-throated blue warbler (Setophaga caerulescens). Data were collected from birds breeding at the Hubbard Brook Experimental Forest, New Hampshire, USA, where long-term trends toward warmer springs have been recorded. We found that black-throated blue warblers initiated breeding earlier in warmer springs, that early breeders were more likely to attempt a second brood than those starting later in the season, and that double brooding and lay date were linked to higher annual fecundity. Accordingly, we found selection favored earlier breeding in most years. However, in contrast to studies of several other long-distance migratory species in Europe, this selection pressure was not stronger in warmer springs, indicating that these warblers were able to adjust mean lay date appropriately to substantial inter-annual variation in spring temperature. Our results suggest that this North American migratory songbird might not experience the same fecundity declines as songbirds that are unable to adjust their timing of breeding in pace with spring temperatures

    The promise and peril of intensive-site-based ecological research: insights from the Hubbard Brook ecosystem study

    Get PDF
    Abstract. Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery?We provide an overview of these issues with a particular focus on one prominent intensive research site: the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. Among the key features of intensive sites are: long-term, archived data sets that provide a context for new discoveries and the elucidation of ecological mechanisms; the capacity to constrain inputs and parameters, and to validate models of complex ecological processes; and the intellectual cross-fertilization among disciplines in ecological and environmental sciences. The feasibility of scaling up ecological observations from intensive sites depends upon both the phenomenon of interest and the characteristics of the site. An evaluation of deviation metrics for the HBEF illustrates that, in some respects, including sensitivity and recovery of streams and trees from acid deposition, this site is representative of the Northern Forest region, of which HBEF is a part. However, the mountainous terrain and lack of significant agricultural legacy make the HBEF among the least disturbed sites in the Northern Forest region. Its relatively cool, wet climate contributes to high stream flow compared to other sites. These similarities and differences between the HBEF and the region can profoundly influence ecological patterns and processes and potentially limit the generality of observations at this and other intensive sites. Indeed, the difficulty of scaling up may be greatest for ecological phenomena that are sensitive to historical disturbance and that exhibit the greatest spatiotemporal variation, such as denitrification in soils and the dynamics of bird communities. Our research shows that end member sites for some processes often provide important insights into the behavior of inherently heterogeneous ecological processes. In the current era of rapid environmental and biological change, key ecological responses at intensive sites will reflect both specific local drivers and regional trends

    Data from: Breeding timed to maximize reproductive success for a migratory songbird: the importance of phenological asynchrony

    Get PDF
    Phenological advances and trophic mismatches are frequently reported ecological consequences of climate warming. Trophic mismatches occur when phenological responses to environmental conditions differ among trophic levels such that the timing of resource demand by consumers becomes decoupled from supply. We used 25 years of demographic measurements of a migratory songbird (the black-throated blue warbler Setophaga caerulescens) to compare its breeding phenology to the phenology of both its caterpillar prey and the foliage on which caterpillars feed. Caterpillar biomass in this forest did not show a predictable seasonal pulse. Nest initiation by warblers in this northern hardwood forest was therefore not timed to coincide with a peak in food availability for nestlings. Nonetheless, timing of first clutches was strongly associated with spring leaf expansion (slope ± SE = 0.56 ± 0.08 days per day of change in leaf phenology, R2 = 0.66). Warblers adjusted the timing of breeding to early springs mainly by shortening the interval between arrival and clutch initiation, but this likely has limits because recent early springs are approaching the relatively inflexible dates when birds arrive on the breeding grounds. Although the timing of first nests did not match 1:1 with leaf-out phenology, the adjustments in breeding time maximized mean annual reproductive success. Nest predation had the greatest effect on annual reproductive success, but the ability of nesting warblers to appropriately track leaf phenology accounted for effects on annual reproductive success comparable to the influence of variation in caterpillar abundance and conspecific density. Nesting phenology in black-throated blue warblers was generally well matched to the timing of leaf-out, even though the match was not 1:1. Without measurements of reproductive success, these unequal phenological shifts might otherwise have been interpreted as having negative ecological consequences

    BTBW_annual_data

    No full text
    Annual summaries of field data on black-throated blue warbler reproduction (1986-2010) gathered at the Hubbard Brook Experimental Forest in Thornton, NH, USA. Notes on column headings are as follows: prop.F.ASY = proportion older (ASY) females; Acsa.budburst = day of sugar maple (Acer saccharum) budburst (Day 1 = 01 January); Acsa.canopy = day of nearly complete (90%) expansion of sugar maple leaves; arrival.50 = median arrival date of male black-throated blue warblers; clutch.init.50 = median clutch initiation date of black-throated blue warblers; mean.cats = mean dry caterpillar biomass (mg/8000 leaves) across the whole season; ln.mean.cats = seasonal mean dry caterpillar biomass, natural log-transformed; mean.first.cats = mean dry caterpillar biomass (mg/2000 leaves) in the early season; ln.first.cats = mean dry caterpillar biomass (mg/2000 leaves) in the early season, natural log-transformed; high_day = day of the count with the highest caterpillar biomass; density = breeding black-throated blue warblers per 64ha; survival = daily nest survival rate; mean.fledged = average annual reproductive success (mean number of young fledged per pair per year)

    Warm Springs, Early Lay Dates, and Double Brooding in a North American Migratory Songbird, the Black-Throated Blue Warbler

    Get PDF
    <div><p>Numerous studies have correlated the advancement of lay date in birds with warming climate trends, yet the fitness effects associated with this phenological response have been examined in only a small number of species. Most of these species–primarily insectivorous cavity nesters in Europe–exhibit fitness declines associated with increasing asynchrony with prey. Here, we use 25 years of demographic data, collected from 1986 to 2010, to examine the effects of spring temperature on breeding initiation date, double brooding, and annual fecundity in a Nearctic - Neotropical migratory songbird, the black-throated blue warbler (Setophaga caerulescens). Data were collected from birds breeding at the Hubbard Brook Experimental Forest, New Hampshire, USA, where long-term trends toward warmer springs have been recorded. We found that black-throated blue warblers initiated breeding earlier in warmer springs, that early breeders were more likely to attempt a second brood than those starting later in the season, and that double brooding and lay date were linked to higher annual fecundity. Accordingly, we found selection favored earlier breeding in most years. However, in contrast to studies of several other long-distance migratory species in Europe, this selection pressure was not stronger in warmer springs, indicating that these warblers were able to adjust mean lay date appropriately to substantial inter-annual variation in spring temperature. Our results suggest that this North American migratory songbird might not experience the same fecundity declines as songbirds that are unable to adjust their timing of breeding in pace with spring temperatures.</p> </div

    Long-Term Integrated Studies Show Complex and Surprising Effects of Climate Change in the Northern Hardwood Forest

    Get PDF
    Evaluations of the local effects of global change are often confounded by the interactions of natural and anthropogenic factors that overshadow the effects of climate changes on ecosystems. Long-term watershed and natural elevation gradient studies at the Hubbard Brook Experimental Forest and in the surrounding region show surprising results demonstrating the effects of climate change on hydrologic variables (e.g., evapotranspiration, streamflow, soil moisture); the importance of changes in phenology on water, carbon, and nitrogen fluxes during critical seasonal transition periods; winter climate change effects on plant and animal community composition and ecosystem services; and the effects of anthropogenic disturbances and land-use history on plant community composition. These studies highlight the value of long-term integrated research for assessments of the subtle effects of changing climate on complex ecosystem
    corecore