55 research outputs found

    Voltammetric monitoring of laccase-catalysed mediated reactions

    Get PDF
    Six different compounds capable of mediating laccase-catalysed reactions have been tested by cyclic voltammetry. They exhibited quasi-reversible electrodic behaviour with formal redox potentials ranging from 150 to 800 mV (E-0t vs. SCE). The immersion of a laccase-coated glassy carbon electrode (GCE) in mediator solutions generated large cathodic catalytic currents easily recorded by cyclic voltammetry at low-potential scan rates. This current showed two well-defined pH profiles, which correlated with the variation of the mediator redox potentials at the pH range tested. The relevant effect of temperature on the activity of laccase has been assessed here. Likewise, it was shown that the cut-rent record varied with the substrate concentration. This trend fitted Michaelis-Menten kinetics, which allowed us to give an estimation of the affinity of the fungal laccase for the different mediators. (C) 2002 Elsevier Science B.V. All rights reserved

    An acid-stable laccase from sclerotium rolfsii with potential for wool dye decolourization

    Get PDF
    The plant pathogen basidiomycete S. rolfsii secretes two laccases (SRL1 and SRL2) with molecular weights of 55 and 86 kDa, respectively. Laccase production was shown to be inducible by the addition of 2,5-xylidine to the cultural media. After treatment with a combination of chitinase and -1,3-glucanase, two different laccases were isolated from the sclerotia depending on the stage of sclerotia development. The more prominent laccase, SRL1, was purified and found to decolourize the industrially important wool azo dye Diamond Black PV 200 without the addition of redox mediators. The enzyme (pI 5.2) was active in the acidic pH range, showing an optimal activity at pH 2.4, with ABTS as substrate. The optimum temperature for activity was determined to be 62 ◦C. Enzyme stability studies revealed that SRL1 was notably stable at 18 ◦C and pH 4.5, retaining almost full activity after a week. Oxidation of tyrosine was not detectable under the reaction conditions but the enzyme did oxidize a variety of the usual laccase substrates. SRL1 was strongly inhibited by sodium azide and fluoride. Dye solutions decolourized with the immobilized laccase were successfully used for redyeing.(undefined

    Oxalic acid, versatile peroxidase secretion and chelating ability of Bjerkandera fumosa in rich and limited culture conditions

    Get PDF
    Efficient ligninolytic systems of wood-degrading fungi include not only oxidizing enzymes, but also low-molecular-weight effectors. The ability of Bjerkandera fumosa to secrete oxalic acid and versatile peroxidase (VP) in nitrogen-rich and nitrogen-limited media was studied. Higher activity of VP was determined in the nitrogen-limited media but greater concentration of oxalic acid was observed in the cultures of B. fumosa without nitrogen limitation. Ferric ions chelating ability of Bjerkandera fumosa studied in ferric ions limited media was correlated with the increased level of oxalic acid. The presence of hydroxamate-type siderophores in B. fumosa media were also detected. Oxalate decarboxylase was found to be responsible for regulation of oxalic acid concentration in the tested B. fumosa cultures

    Effect of Ethanol on Enzymatic Activity of Fungal Laccases

    No full text
    corecore