184 research outputs found

    Functional changes in railway stations in Poland and Ukraine

    Get PDF
    In Poland and in Ukraine, railway areas are managed by state enterprises. Both countries are facing the problem of depreciation of railway property, especially along railway lines that are no longer used. The purpose of this article is to present the situation of railway stations in small and medium-sized towns in Poland and in Ukraine with a particular focus on the functional changes. These stations constitute assets which, due to the development of railways and road transport, are losing their usefulness in some locations. In both countries there are objects of this kind, in a state of disrepair and alling into ruin. Only finding a new use for these buildings can save tchem from ultimate damage. In Ukraine, converting small and medium-sized station buildings into housing units is the specificity of the transformations. In Poland, housing developments appear along railway lines no longer in use (provisions of law put restrictions on this type of transformations).W Polsce i na Ukrainie terenami kolejowymi zarządzają przedsiębiorstwa państwowe. Obydwa kraje borykają się z problemem dekapitalizacji majątku kolejowego, szczególnie przy nieczynnych liniach. Celem artykułu jest przedstawienie sytuacji dworców kolejowych w małych i średniej wielkości miastach w Polsce i na Ukrainie ze szczególnym zwróceniem uwagi na zmiany w ich zagospodarowaniu i związanymi z tym zmianami funkcjonalnymi. Dworce te stanowią majątek, który ze względu na rozwój kolejnictwa i transportu drogowego tracą w niektórych miejscowościach swoje znaczenie i użyteczność. W obydwu krajach znajdują się obiekty nieodpowiednio zagospodarowane, ulegające niszczeniu i popadające w ruinę. Jedynie zmiana ich przeznaczenia może uchronić budynki przed ostatecznym zniszczeniem. Specyfiką przekształceń na Ukrainie jest adaptowanie małych i średniej wielkości budynków dworcowych na cele mieszkaniowe. W Polsce funkcje mieszkaniowe pojawiają się przy nieczynnych liniach kolejowych (przepisy prawne ograniczają tego typu przekształcenia)

    The identification of pyrolysis products of the alphaset binder with gas chromatography/mass spectrometry

    Get PDF
    Pyrolysis-gas chromatography-mass spectrometry (PyGC/MS) was used to identify the major organic products created by pyrolysis of the ALPHASET binder components: hardener/catalyst, resin and cured resin. During the casting process, the cores and moulds are subjected to intense heat from the molten metal. As a result the organic components undergo thermal decomposition and produce a number of complex organic compounds. In this study, the organics were tentatively identified by GC/MS after pyrolysis of the components at 700, 900 and 1100°C

    Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS)

    Get PDF
    AbstractThe article presents the results of research on thermal decomposition of Ester-Cured Alkaline Phenolic No-Bake (ALPHASET) binders used in molding technology. In the ALPHASET system phenol-formaldehyde resin of resole type is cured with a liquid mixture of esters. Under the influence of the molten metal the thermal decomposition of the binder follows, resulting in the evolution of gases, often harmful, e.g. from benzene, toluene, ethylbenzene and xylenes (BTEX) or Polycyclic Aromatic Hydrocarbon (PAH) groups. The identification of gases evolved during the pyrolysis of the binders was carried out and their decomposition temperatures were determined using the Thermogravimetry–Gas Chromatography–Mass Spectrometry (TG–GC–MS) technique. The tests were subjected to two types of binders from different manufacturers. Among the products of pyrolysis there have been identified mainly benzene and its derivatives, and phenol and its derivatives. Compounds identified in pyrolytic gas are largely considered to be harmful to humans and the environment (some of the compounds are carcinogenic and mutagenic). The presented results of the TG–GC–MS measurements show that the applied analytic methods are feasible to perform a qualitative and also quantitative characterization of the binder samples

    Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS)

    Get PDF
    AbstractThe article presents the results of research on thermal decomposition of Ester-Cured Alkaline Phenolic No-Bake (ALPHASET) binders used in molding technology. In the ALPHASET system phenol-formaldehyde resin of resole type is cured with a liquid mixture of esters. Under the influence of the molten metal the thermal decomposition of the binder follows, resulting in the evolution of gases, often harmful, e.g. from benzene, toluene, ethylbenzene and xylenes (BTEX) or Polycyclic Aromatic Hydrocarbon (PAH) groups. The identification of gases evolved during the pyrolysis of the binders was carried out and their decomposition temperatures were determined using the Thermogravimetry–Gas Chromatography–Mass Spectrometry (TG–GC–MS) technique. The tests were subjected to two types of binders from different manufacturers. Among the products of pyrolysis there have been identified mainly benzene and its derivatives, and phenol and its derivatives. Compounds identified in pyrolytic gas are largely considered to be harmful to humans and the environment (some of the compounds are carcinogenic and mutagenic). The presented results of the TG–GC–MS measurements show that the applied analytic methods are feasible to perform a qualitative and also quantitative characterization of the binder samples

    P120-Catenin Isoforms 1 and 3 Regulate Proliferation and Cell Cycle of Lung Cancer Cells via β-Catenin and Kaiso Respectively

    Get PDF
    <div><h3>Background</h3><p>The different mechanisms involved in p120-catenin (p120ctn) isoforms' 1/3 regulation of cell cycle progression are still not elucidated to date.</p> <h3>Methods and Findings</h3><p>We found that both cyclin D1 and cyclin E could be effectively restored by restitution of p120ctn-1A or p120ctn-3A in p120ctn depleted lung cancer cells. When the expression of cyclin D1 was blocked by co-transfection with siRNA-cyclin D1 in p120ctn depleted cells restoring p120ctn-1A or 3A, the expression of cyclin E was slightly decreased, not increased, implying that p120ctn isoforms 1 and 3 cannot up-regulate cyclin E directly but may do so through up-regulation of cyclin D1. Interestingly, overexpression of p120ctn-1A increased β-catenin and cyclin D1 expression, while co-transfection with siRNA targeting β-catenin abolishes the effect of p120ctn-1A on up-regulation of cyclin D1, suggesting a role of β-catenin in mediating p120ctn-1A's regulatory function on cyclin D1 expression. On the other hand, overexpression of p120ctn isoform 3A reduced nuclear Kaiso localization, thus decreasing the binding of Kaiso to KBS on the cyclin D1 promoter and thereby enhancing the expression of cyclin D1 gene by relieving the repressor effect of Kaiso. Because overexpressing NLS-p120ctn-3A (p120ctn-3A nuclear target localization plasmids) or inhibiting nuclear export of p120ctn-3 by Leptomycin B (LMB) caused translocation of Kaiso to the nucleus, it is plausible that the nuclear export of Kaiso is p120ctn-3-dependent.</p> <h3>Conclusions</h3><p>Our results suggest that p120ctn isoforms 1 and 3 up-regulate cyclin D1, and thereby cyclin E, resulting in the promotion of cell proliferation and cell cycle progression in lung cancer cells probably via different protein mediators, namely, β-catenin for isoform 1 and Kaiso, a negative transcriptional factor of cyclin D1, for isoform 3.</p> </div

    A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance

    Get PDF
    Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes

    Selective Activation of p120ctn-Kaiso Signaling to Unlock Contact Inhibition of ARPE-19 Cells without Epithelial-Mesenchymal Transition

    Get PDF
    Contact-inhibition ubiquitously exists in non-transformed cells and explains the poor regenerative capacity of in vivo human retinal pigment epithelial cells (RPE) during aging, injury and diseases. RPE injury or degeneration may unlock mitotic block mediated by contact inhibition but may also promote epithelial-mesenchymal transition (EMT) contributing to retinal blindness. Herein, we confirmed that EMT ensued in post-confluent ARPE-19 cells when contact inhibition was disrupted with EGTA followed by addition of EGF and FGF-2 because of activation of canonical Wnt and Smad/ZEB signaling. In contrast, knockdown of p120-catenin (p120) unlocked such mitotic block by activating p120/Kaiso, but not activating canonical Wnt and Smad/ZEB signaling, thus avoiding EMT. Nuclear BrdU labeling was correlated with nuclear release of Kaiso through p120 nuclear translocation, which was associated with activation of RhoA-ROCK signaling, destabilization of microtubules. Prolonged p120 siRNA knockdown followed by withdrawal further expanded RPE into more compact monolayers with a normal phenotype and a higher density. This new strategy based on selective activation of p120/Kaiso but not Wnt/β-catenin signaling obviates the need of using single cells and the risk of EMT, and may be deployed to engineer surgical grafts containing RPE and other tissues

    TFEB regulates murine liver cell fate during development and regeneration

    Get PDF
    It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer

    Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function

    Get PDF
    Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation

    Regulation of proteasome assembly and activity in health and disease

    Get PDF
    corecore