317 research outputs found

    High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases

    Get PDF
    Despite the recent progress in the understanding of neurodegenerative disorders, a lack of solid fundamental knowledge on the etiology of many of the major neurodegenerative diseases has made it difficult to obtain effective therapies to treat these conditions. Scientists have been looking to carry out more-human-relevant studies, with strong statistical power, to overcome the limitations of preclinical animal models that have contributed to the failure of numerous therapeutics in clinical trials. Here, we identify currently existing platforms to mimic central nervous system tissues, healthy and diseased, mainly focusing on cell-based platforms and discussing their strengths and limitations in the context of the high-throughput screening of new therapeutic targets and drugs.This work had the financial support of Fundação para a Ciência e Tecnologia ( FCT ) through National Funds and, when applicable, co-financed by the FEDER through the PT2020 Partnership Agreement under the 4293 Unit I&D. D.N. Rocha acknowledges FCT for her PhD grant

    The role of the surface on microglia function: Implications for central nervous system tissue engineering

    Get PDF
    In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia-the resident immune cells of the central nervous system (CNS)-and on their response to poly(trimethylene carbonate-co-1-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-a was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microgliaconditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration.This work was financed by FEDER funds through the Programa Operacional Factores de Competitividade – COMPETE and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of the project PEst-C/SAU/LA0002/2011. L.P. and D.R. thank FCT for their PhD grants (SFRH/BD/46015/2008 and SFRH/BD/64079/2009)

    Ibuprofen-loaded fibrous patches-taming inhibition at the spinal cord injury site

    Get PDF
    It is now widely accepted that a therapeutic strategy for spinal cord injury (SCI) demands a multi-target approach. Here we propose the use of an easily implantable bilayer polymeric patch based on poly(trimethylene carbonate-co-e-caprolactone) (P(TMC-CL)) that combines physical guidance cues provided by electrospun aligned fibres and the delivery of ibuprofen, as a mean to reduce the inhibitory environment at the lesion site by taming RhoA activation. Bilayer patches comprised a solvent cast film onto which electrospun aligned fibres have been deposited. Both layers were loaded with ibuprofen. In vitro release (37°C, in phosphate buffered saline) of the drug from the loaded scaffolds under sink condition was found to occur in the first 24 h. The released ibuprofen was shown to retain its bioactivity, as indicated by the reduction of RhoA activation when the neuronal-like cell line ND7/23 was challenged with lysophosphatidic acid. Ibuprofen-loaded P(TMC-CL) bilayer scaffolds were successfully implanted in vivo in a dorsal hemisection rat SCI model mediating the reduction of RhoA activation after 5 days of implantation in comparison to plain P(TMC-CL) scaffolds. Immunohistochemical analysis of the tissue shows ßIII tubulin positive cells close to the ibuprofen-loaded patches further supporting the use of this strategy in the context of regeneration after a lesion in the spinal cord.This work was financed by FEDER funds through the Programa Operacional Factores de Competitividade – COMPETE and by Portuguese funds through FCT– Fundação para a Ciência e a Tecnologia in the framework of the project PEst-C/SAU/LA0002/2011 and PTDC/CTM-NAN/115124/2009. LR Pires, CDF Lopes and DN Rocha thank FCT for their PhD grants (SFRH/BD/46015/2008, SFRH/BD/77933/2011 and SFRH/BD/64079 / 2009). The authors wish to thank Mónica M Sousa, Ana Marques and Marlene Morgado (Nerve Regeneration group, IBMC|i3S) for the help in animal experimentation and Cecília Alves and Daniela Sousa (INEB|i3S) for assistance in image analysis. Authors acknowledge the Centro de Materiais da Universidade do Porto (CEMUP; REEQ/1062/CTM/2005 from FCT) for SEM and 1H NMR analysis and Dr. Sérgio Simões for the possibility to use the HPLC equipment at Bluepharma (Coimbra)

    Extracellular environment contribution to astrogliosis-lessons learned from a tissue engineered 3D model of the glial scar

    Get PDF
    Glial scars are widely seen as a (bio)mechanical barrier to central nervous system regeneration. Due to the lack of a screening platform, which could allow in-vitro testing of several variables simultaneously, up to now no comprehensive study has addressed and clarified how different lesion microenvironment properties affect astrogliosis. Using astrocytes cultured in alginate gels and meningeal fibroblast conditioned medium, we have built a simple and reproducible 3D culture system of astrogliosis mimicking many features of the glial scar. Cells in this 3D culture model behave similarly to scar astrocytes, showing changes in gene expression (e.g., GFAP) and increased extra-cellular matrix production (chondroitin 4 sulfate and collagen), inhibiting neuronal outgrowth. This behavior being influenced by the hydrogel network properties. Astrocytic reactivity was found to be dependent on RhoA activity, and targeting RhoA using shRNA-mediated lentivirus reduced astrocytic reactivity. Further, we have shown that chemical inhibition of RhoA with ibuprofen or indirectly targeting RhoA by the induction of extracellular matrix composition modification with chondroitinase ABC, can diminish astrogliosis. Besides presenting the extracellular matrix as a key modulator of astrogliosis, this simple, controlled and reproducible 3D culture system constitutes a good scar-like system and offers great potential in future neurodegenerative mechanism studies, as well as in drug screenings envisaging the development of new therapeutic approaches to minimize the effects of the glial scar in the context of central nervous system disease.This work had the financial support of the Portuguese Fundação para a Ciência e Tecnologia (FCT) / Ministério da Educação e Ciência (MEC) through National Funds and, when applicable, co-financed by the FEDER via the PT2020 Partnership Agreement under the 4293 Unit I&D. DR acknowledges FCT for her PhD scholarship /SFRH/BD/64079/2009). Authors thank Dr. Michiyuki Matsuda (Kyoto University, Japan) for the RhoA FRET probe with enhanced sensitivity and Dr. Yingxiao Wang (University of California, USA) for the Src FRET probe

    Very special relativity as relativity of dark matter: the Elko connection

    Get PDF
    In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM(2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM(2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.Comment: 19 pages. Section 5 is new. Published version (modulo a footnote, and a corrected typo

    Iron, silicate, and light co-limitation of three Southern Ocean diatom species

    Get PDF
    The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Gibberellin A1 Metabolism Contributes to the Control of Photoperiod-Mediated Tuberization in Potato

    Get PDF
    Some potato species require a short-day (SD) photoperiod for tuberization, a process that is negatively affected by gibberellins (GAs). Here we report the isolation of StGA3ox2, a gene encoding a GA 3-oxidase, whose expression is increased in the aerial parts and is repressed in the stolons after transfer of photoperiod-dependent potato plants to SD conditions. Over-expression of StGA3ox2 under control of constitutive or leaf-specific promoters results in taller plants which, in contrast to StGA20ox1 over-expressers previously reported, tuberize earlier under SD conditions than the controls. By contrast, StGA3ox2 tuber-specific over-expression results in non-elongated plants with slightly delayed tuber induction. Together, our experiments support that StGA3ox2 expression and gibberellin metabolism significantly contribute to the tuberization time in strictly photoperiod-dependent potato plants
    corecore