7 research outputs found

    Role of Entropy in Colloidal Self-Assembly

    Get PDF
    Entropy plays a key role in the self-assembly of colloidal particles. Specifically, in the case of hard particles, which do not interact or overlap with each other during the process of self-assembly, the free energy is minimized due to an increase in the entropy of the system. Understanding the contribution of entropy and engineering it is increasingly becoming central to modern colloidal self-assembly research, because the entropy serves as a guide to design a wide variety of self-assembled structures for many technological and biomedical applications. In this work, we highlight the importance of entropy in different theoretical and experimental self-assembly studies. We discuss the role of shape entropy and depletion interactions in colloidal self-assembly. We also highlight the effect of entropy in the formation of open and closed crystalline structures, as well as describe recent advances in engineering entropy to achieve targeted self-assembled structures

    Enhanced Porosity in Self-Assembled Morphologies Mediated by Charged Lobes on Patchy Particles

    Get PDF
    Colloidal patchy particles are particles with anisotropic “patches” decorating their surfaces. Several properties of these patches including their size, number, location, and interactions provide control over self-assembly of patchy particles into structures with desired properties. We report on simulation studies of particles where patches take the form of lobes. Based on the number and locations of lobes, these particles have different shapes (trigonal planar, square planar, tetrahedral, trigonal bipyramidal, and octahedral). We investigated the effect of incorporating charges on the lobes in achieving porous self-assembled morphologies across a range of temperatures. We observed that an increase in the charge on the lobe resulted in lobed particles assembling over a wider range of temperatures. We also observed that the lobed particles with charges self-assembled into structures with enhanced porosity in comparison to lobed particles without charges

    Design of Functionalized Lobed Particles for Porous Self-Assemblies

    Get PDF
    Colloidal particles fabricated with anisotropic interactions have emerged as building blocks for designing materials with various nanotechnological applications. We used coarse-grained Langevin dynamics simulations to probe the morphologies of self-assembled structures formed by lobed particles decorated with functional groups. We tuned the interactions between the functional groups to investigate their effect on the porosity of self-assembled structures formed by lobed particles with different shapes (snowman, dumbbell, trigonal planar, tetrahedral, square planar, trigonal bipyramidal, and octahedral) at different temperatures. The dumbbell, trigonal planar, and square planar shaped particles, with planar geometries, form self-assembled structures including elongated chains, honeycomb sheets, and square sheets, respectively. The particles with non-planar geometries (tetrahedral, trigonal bipyramidal, and octahedral) self-assemble into random aggregate morphologies. The structures formed by trigonal bipyramidal and octahedral particles exhibit smaller and homogeneous pores compared to the structures formed by trigonal planar and square planar particles. The porosity in self-assembled structures is substantially enhanced by the functionalization of particles

    Self-Assembly in Mixtures of Charged Lobed Particles

    Get PDF
    We report coarse-grained Langevin dynamics simulations of homogeneous mixtures of lobed colloidal particles with opposite charges. We show that dumbbell, trigonal planar, tetrahedral, square planar, trigonal bipyramidal, and octahedral shaped particles form distinct self-assemblies including chains, sheets, crystalline, and spherical structures. The dumbbell and square planar particles predominantly form chains and sheets while other particles form network-like self-assembled morphologies. At higher temperatures and lower charges, non-planar particles form three-dimensional aggregates. We further report on packing arrangements of particles which lead to differences in porosities within self-assembled morphologies. Our results show that the trigonal planar particles form larger porous structures. The self-assembled structures that we report are potentially useful in designing porous biomaterials for biomedical applications

    Epitaxial Self-Assembly of Interfaces of 2D Metal–Organic Frameworks for Electroanalytical Detection of Neurotransmitters

    Get PDF
    This paper identifies the electrochemical properties of individual facets of anisotropic layered conductive metal–organic frameworks (MOFs) based on M3(2,3,6,7,10,11-hexahydroxytriphenylene)2 (M3(HHTP)2) (M = Co, Ni). The electroanalytical advantages of each facet are then applied toward the electrochemical detection of neurochemicals. By employing epitaxially controlled deposition of M3(HHTP)2 MOFs on electrodes, the contribution of the basal plane ({001} facets) and edge sites ({100} facets) of these MOFs can be individually determined using electrochemical characterization techniques. Despite having a lower observed heterogeneous electron transfer rate constant, the {001} facets of the M3(HHTP)2 systems prove more selective and sensitive for the detection of dopamine than the {100} facets of the same MOF, with the limit of detection (LOD) of 9.9 ± 2 nM in phosphate-buffered saline and 214 ± 48 nM in a simulated cerebrospinal fluid. Langmuir isotherm studies accompanied by all-atom MD simulations suggested that the observed improvement in performance and selectivity is related to the adsorption characteristics of analytes on the basal plane versus edge sites of the MOF interfaces. This work establishes that the distinct crystallographic facets of 2D MOFs can be used to control the fundamental interactions between analyte and electrode, leading to tunable electrochemical properties by controlling their preferential orientation through self-assembly

    AMAZONIA CAMTRAP: A data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest

    Get PDF
    The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scattered across the published, peer-reviewed, and gray literature and in unpublished raw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazon regions to compile the most extensive data set of inventories of mammal, bird, and reptile species ever assembled for the area. The complete data set comprises 154,123 records of 317 species (185 birds, 119 mammals, and 13 reptiles) gathered from surveys from the Amazonian portion of eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname, and Venezuela). The most frequently recorded species per taxa were: mammals: Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles: Tupinambis teguixin (716 records). The information detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a more accurate evaluation of the effects of habitat loss, fragmentation, climate change, and other human-mediated defaunation processes in one of the most important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when using its data in publications and we also request that researchers and educators inform us of how they are using these data
    corecore