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ABSTRACT: Colloidal patchy particles are particles with aniso-
tropic “patches” decorating their surfaces. Several properties of these
patches including their size, number, location, and interactions
provide control over self-assembly of patchy particles into structures
with desired properties. We report on simulation studies of particles
where patches take the form of lobes. Based on the number and
locations of lobes, these particles have different shapes (trigonal
planar, square planar, tetrahedral, trigonal bipyramidal, and
octahedral). We investigated the effect of incorporating charges
on the lobes in achieving porous self-assembled morphologies across
a range of temperatures. We observed that an increase in the charge
on the lobe resulted in lobed particles assembling over a wider range
of temperatures. We also observed that the lobed particles with
charges self-assembled into structures with enhanced porosity in comparison to lobed particles without charges.

■ INTRODUCTION

Self-assembly of colloidal particles into structures with desired
functional properties is an emerging approach for the discovery
of novel materials.1 One of the strategies to design colloidal
particles for self-assembly is to anisotropically decorate the
surface of particles with patches made up of synthetic or
biological molecules, including proteins2−4 or complementary
DNA strands,5−9 which result in selective and directional
interactions,10 to provide control over the morphologies of
self-assembled structures.11

The size, number, location, and interactions among the
patches as well as environmental conditions (temperature and
concentration) determine the phase behavior and morphology
of highly ordered structures.12 The synthesis of colloidal
particles with protrusions (lobes) that mimic atomic valence
(i.e., the positions of their lobes resemble hybridized atomic
orbitals) results in particles with well-controlled three-dimen-
sional bonding symmetries, which expand the possibilities for
novel self-assembled structures.13 We have previously shown
that colloidal particles with lobes self-assemble to form porous
structures due to the increased excluded volume created by
lobes in their nonspherical shapes.12,14

In addition to particle shape and short-range interactions,
the charges on colloidal particles also play a key role in
determining the phase behavior of self-assembled structures.15

When working with the self-assembly of oppositely charged
colloidal particles, it is crucial to manage the balance between
entropically driven close-packed arrangements and electro-

statically driven non-close-packed conformations.16 Rugge et
al.17 tuned the charge on the surface of silica particles and
modified ionizable polysterene particles by changing the pH of
the solution and showed that they form polycrystalline close-
packed arrays when both particles are highly charged.
However, when only the silica particles are highly charged,
these particles acted as templating agents forcing the weakly
interacting polystyrene particles to order into a crystalline
lattice.
Tuning of electrostatic interactions between oppositely

charged colloidal particles leads to the formation of colloidal
crystals,18 and the changes in the magnitude of these opposite
charges result in the formation of different crystal arrange-
ments.19 Leunissen et al.18 tuned the charges on the surface of
poly(methyl methacrylate) (PMMA) and silica spheres by
varying the salt concentration in the suspension and obtained
assemblies mimicking NaCl and other binary crystals for
different volume fractions and particle sizes. Bartlett et al.19

observed that changing the magnitude of the charges on the
surface of PMMA particles containing different ionizable dyes
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led to the formation of different lattices (e.g., face-centered
cubic).
Given the importance of long-range interactions, the role of

heterogeneously charged patchy particles (i.e., particles with
patches of the opposite charge) in the formation of self-
assembled structures has been examined.20,21 Recent develop-
ments have allowed the experimental synthesis of colloids with
a positively charged equatorial belt and two negatively charged
polar patches,22 and colloids with two oppositely charged
patches.23

While these experimental studies showed the effect of
charges in altering the self-assembled morphology, several
previous studies have been limited to charges on the surface of
spherical particles. However, no self-assembly studies to date
have been performed to understand the role of incorporating
charges on the lobes in lobed patchy particles. The use of
molecular simulation methods to model and optimize the self-
assembly of charged particles is increasingly becoming routine
in understanding conditions under which the balance between
the entropic and electrostatic contributions can be tuned to
produce highly porous structures12,14,24 and bicontinuous
gels.25−27 In this study, we investigated the effect of
incorporating charges on the lobes in lobed patchy particles,
characterized the morphologies and porosities of self-
assembled structures, and compared the results with our
previous study involving lobed particles without charges.14

■ MODELS AND METHODS

Modeled Lobed Particles. We have studied the self-
assembly behavior of five different types of lobed particles with
charges on the lobes. Based on their shapes, these include
trigonal planar (S3

TP), square planar (S4
SP), tetrahedral (S4

TH),
trigonal bipyramidal (S5

TB), and octahedral (S6
OC) particles

(Figure 1).
We used harmonic potentials to model all bonds (eq 1) and

angles (eq 2) in lobed particles with the values of force
constants (kbond and kangle) as 1000 (in reduced units) to retain
the modeled shapes of particles during simulations.

= −V r k r r( )
1
2

( )ij ijbond bond 0
2

(1)

θ θ θ= −V k( )
1
2

( )ijk ijkangle angle 0
2

(2)

The parameter rij is the distance between the particles i and j,
θijk is the angle formed between the particles i, j, and k, and r0
and θ0 are the equilibrium bond distance and angle,
respectively.
All parameters used in our simulations had reduced units.

The diameters of a seed (σS) and a lobe (σL) were set as 2 and
1, respectively. The mass of each seed (mS) and lobe (mL) was
set as 1. We considered three different types of charges for the
negative lobes: −2.0, −4.0, and −6.0. We ensured that the
overall charge of each lobed particle was neutral per eq 3

| | =
| |

q
N q

NPL
NL NL

PL (3)

where qPL and qNL are the charges in the positive and negative
lobes, respectively, and NPL and NNL are the number of positive
and negative lobes present in each particle, respectively. Taking
a four-lobed square planar (S4

SP) particle as an example, where
two lobes are negative and two lobes are positive, if each of its
two negative lobes has a −2.0 charge, then each of its two
positive lobes will have a +2.0 charge. However, in a five-lobed
trigonal bipyramidal (S5

TB) particle, where three lobes are
negative and two lobes are positive, if each of its three negative
lobes has a −2.0 charge, then the remaining two positive lobes
will have a +3.0 charge each.

Interaction Potentials. The nonbonded interactions
between seed−seed (S−S), lobe−lobe (L−L), and seed−
lobe (S−L) pairs were modeled by using the shifted Lennard-
Jones (SLJ) potential (eq 4)
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where εij is the depth of the pair-potential well for species i and
j and σ is the diameter of the particle. Equation 4 was used to
model the pairwise interactions when rij < rcut + Δ, where rcut is
a cutoff distance and Δ = (σi + σj)/2 − 1, where σi and σj are
the diameters of the particles i and j, respectively. When rij ≥
(rcut + Δ), nonbonded interactions are neglected, i.e., VSLJ(rij)
= 0. The electrostatic interactions that arise due to the charged
lobes were accounted for by using an electrostatic potential (eq
5)

πε ε
=V r

q q

r
( )

4
1

ij
i j

r ij
Elec

0 (5)

where qi and qj are the charges on the particles i and j,
respectively, and ε0 and εr are the permittivity of the free space
and the relative permittivity, respectively. To account for
electrostatic screening, εr represents the dielectric permittivity
of bulk water (equal to 80) at ambient conditions.

Simulation Details. Coarse-grained Langevin dynamics
simulations were performed for each system by using
HOOMD-Blue, a GPU-accelerated molecular dynamics
(MD) software package.28 All potentials used to model
nonbonded interactions were implemented in HOOMD-
Blue. The electrostatic interactions were modeled by using
the particle−particle−particle-mesh (PPPM) method.29,30

Figure 1. Shapes of charged lobed particles. The neutral central seed
particle and the negatively and positively charged lobes are
represented by tan, red, and blue spheres, respectively. (A) Trigonal
planar (S3

TP), (B) square planar (S4
SP), (C) tetrahedral (S4

TH), (D)
trigonal bipyramidal (S5

TB), and (E) octahedral (S6
OC).
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Each system was composed of 15625 particles of the same
type, and the length of the simulation domain along each
direction was 200σL. The initial configuration of particles for
each system was randomized by simulating them for 104 steps
at kBT = 3.0, a temperature high enough to prevent self-
assembly at all conditions.
The depth of the interatomic potential for the negative

lobe−positive lobe (NL−PL) pairs was fixed at 3, while for all
the other pairs it was set as 1. The short-ranged repulsive
interactions were modeled by setting the cutoff distance (rcut)
as 21/6σ in the SLJ potential for all pairs other than the NL−PL
pairs, since the interactions between NL−PL pairs are
attractive. For the NL−PL pairs, we used rcut = 2.5σ to ensure
attractive interactions. The σ values in the SLJ potential were
set to 2.0, 1.5, and 1.0 for the S−S, S−L, and L−L pairs,
respectively. All parameters for the interatomic potential have
dimensionless units, and their values were chosen for
consistency with our previous work.14

We performed simulations of all five types of particles at
eight different temperature conditions: kBT = 0.1, 0.3, 0.5, 0.7,
0.9, 1.1, 1.3, and 1.5 (which translates into a temperature range
of 29.8−447.0 K, based on the same mapping conditions
described by Long and Ferguson31) for each charge value
(−2.0, −4.0, and −6.0), hence a total of 120 simulations.
Depending on the number of lobes attached to the seed, the
volume fraction (Φ) of the lobed particles in simulation
domains varied from 0.010 to 0.011, per eq 6.

Φ =
+N V N V
V

( )C L L

0 (6)

where N is the number of particles in the system, NL is the
number of lobes in the particle, VC is the volume of the central
seed particle, VL is the volume of a single lobe, and V0 is the
volume of the simulation box.
We also performed 10 additional simulations (two for each

type of particle) to investigate the effect of changing Φ on the
morphology of self-assembled structures by varying Φ between
0.010 and 0.078. The conditions of temperature and lobe
charges for these additional simulations were the ones that
caused the formation of the largest self-assembled structures in
simulations using the original volume fractions. All systems
were simulated by using a time step of 0.005 for 5 × 107 steps
to allow the self-assembled structures to reach equilibrium.
Morphology Analysis. The radial distribution function

(RDF) for the seed−seed pair was calculated via eq 7

ρ
ρ

=g r
r

( )
( )

0 (7)

where ρ(r) is the density of particles at a distance r from the
reference particle and ρ0 is the bulk density. Based on the RDF
curves and qualitative visual inspections using the VMD
software,32 we have identified six different types of self-
assembled phases: chains (CH), crystalline structures (CR),
liquid droplets (LD), random aggregates (RA), spherical
aggregates (SA), and two-dimensional sheets (SH).
In random aggregates, there is no order between the seeds,

and they represent a diverse set of shapes (e.g., cylinders and
wires). The spherical aggregates also do not reveal significant
order between the seeds although they have a well-defined
spherical shape. We define liquid droplets as those self-
assembled structures that show well-defined second and third
coordination shells, as identified by the presence of one or two

broad peaks following the first intense peak (first coordination
shell) in the RDF. The crystalline structures are those where
the seeds are well-ordered, as indicated by the RDF showing
several intense peaks at regular intervals. The names given to
the remaining structures are chains and two-dimensional
sheets.

Porosity Analysis. We extracted the largest possible
cuboids from the self-assembled structures and used the Zeo
++ software33−35 to compute the pore size distributions (PSD)
and accessible surface area (ASA) and to estimate the diameter
of the largest free sphere (DLFS), which is the largest sphere
that can freely diffuse through a self-assembled porous
structure. For the PSD and ASA calculations, we have used a
probe radius equivalent to 1/2σL, consistent with our previous
work.14

■ RESULTS

We observed that the equilibrium phase was reached for all
conditions where the self-assembly occurred, as confirmed by
the convergence of the potential energy per particle (Figure
S1). To gain a better understanding of the phase behavior for
each type of particle, we first report the overall morphologies
of all self-assembled structures as a function of temperature
and charge (Figure 2). The morphologies were assigned based
on the RDF of each system (Figure S2) and visual inspection.
For each type of particle, we observed self-assembly at a wide
range of temperature conditions with an increase in the charge
on each lobe and thereby increased electrostatic interactions
between the lobes.
For example, in Figure 2A we depict the phase behavior of

trigonal planar (S3
TP) particles for all simulated conditions.

These particles were observed to self-assemble into random
aggregates (RA1) at lower temperatures. With an increase in
the charge on the lobes, we observed a morphological
transition to spherical aggregates (SA at qNL = −4.0/kBT =
0.7) and two-dimensional sheets (SH at qNL = −4.0/kBT = 0.5
and at qNL = −6.0/kBT = 0.3−1.3). The formation of chains
(CH) was observed at qNL = −2.0/kBT = 0.3. Most of these
chains are bent, without branches, and composed of 4−30
particles (Figure S3). The longest chain in this phase is
composed of 692 particles (Figure S4).
We note that the random aggregates of S3

TP particles formed
at lower temperatures (termed RA1), at moderate temper-
atures (termed RA2), and at higher temperatures (termed
RA3) are distinct from each other. In RA1, a mixture of chains,
two-dimensional sheets, and three-dimensional aggregates was
observed (Figure S5A). However, RA2 is composed of only
three-dimensional aggregates (Figure S5B), and RA3 is
composed of sheets that fold and wrap around each other,
forming porous three-dimensional aggregates (Figure 3B) and
small polyhedra-like hollow structures (Figure 3C), where no
particles inside the external shell exist. We performed
additional simulations (Figure 3D) and confirmed that these
structures originate from the sheets (Figure 3E). We also
observed the formation of cylindrical tubes in these
independent simulations (Figure 3F).
The square planar (S4

SP) particles formed only one type of
self-assembled phase having two-dimensional sheets. For this
type of building block, self-assembly was observed only at
lower temperatures for qNL = −2.0, at lower to moderate
temperatures for qNL = −4.0, and up to higher temperatures
when qNL = −6.0 (Figure 2B).
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While a variation in the temperature of the system did not
change the type of self-assembled structures (Figure 2B), it
played a role in the overall size of two-dimensional sheets
(Figure 4A,B). By increasing the temperature of the system

from kBT = 0.7 to 1.3 and having the charges on the lobes fixed
with qNL = −6, the smaller sheets gradually merged together to
form larger two-dimensional sheets (Figure 4A,B), while
maintaining their structural motif (Figure 4D). This effect

Figure 2. Phase behavior and morphologies of self-assembled lobed
particles: (A) trigonal planar (S3

TP), (B) square planar (S4
SP), (C)

tetrahedral (S4
TH), (D) trigonal bipyramidal (S5

TB), and (E) octahedral
(S6

OC). Labels: CH, CR, DS, LD, SA, and SH denote chains,
crystalline state, dissociated state (no self-assembly), liquid droplets,
spherical aggregates, and 2-dimensional sheets, respectively. RA1,
RA2, and RA3 denote three different types of random aggregates.

Figure 3. Morphology comparison between independent simulations of trigonal planar particles. The conditions that led to RA3 formation (qNL =
−6.0/kBT = 1.5) were simulated by using new randomized initial positions to confirm that the structures observed originate from the sheets. (A) A
snapshot of the simulation domain from the end of the simulation with the original randomized initial positions. (B, C) A cross-sectional view of
the porous and hollow RA3-type structures, respectively. (D) A snapshot of the simulation domain from the end of the simulation with the new
randomized positions. (E, F) A cross-sectional view of a two-dimensional sheet and a cylindrical tube, respectively.

Figure 4. Self-assembly of square planar particles under different
temperature conditions. (A) Smaller sheets (kBT = 0.7). (B) Larger
sheets (kBT = 1.3). (C) RDF curves for self-assembled structures
shown in panels A and B. (D) Structural motif observed in two-
dimensional sheets (central seeds appear to have different sizes due to
the curvature in sheets).
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can also be observed by comparing the RDF for self-assembled
structures, as the RDF curve for kBT = 1.3 shows a higher
density of lobed particles in the second, third, and fourth
coordination shells (Figure 4C).
We note that both S3

TP and S4
SP particles formed large two-

dimensional sheets (Figure S6) with similar sizes (14797 and
14426 particles for S3

TP and S4
SP, respectively) at the same

condition (qNL = −6.0/kBT = 1.3), but their morphology is
different. The sheets formed by S3

TP particles show a triangular
structural motif, where each pore is surrounded by three
particles (Figure S6C), while the sheets formed by S4

SP particles
show a square structural motif, where each pore is bounded by
four particles (Figure S6D).
For the tetrahedral (S4

TH) particles, simulations showed that
self-assembly occurs only for kBT = 0.1 and 0.3 when qNL =
−2.0, for the range of kBT = 0.1−0.9 when qNL = −4.0, and for
all temperature conditions investigated when qNL = −6.0. It
was also observed that the formation of random aggregates
(RA2) occurred for most conditions where self-assembly
phenomena were observed (Figure 2C). The exceptions were
the transitions from random aggregates (RA2) to liquid
droplets (LD) at kBT = 0.9 and qNL = −4.0 and from random
aggregates (RA2) to spherical aggregates (SA) at kBT = 1.5 and
qNL = −6.0.
The phase behavior of trigonal bipyramidal (S5

TB) particles
(Figure 2D) is similar to that of the S4

TH particles (Figure 2C),
with the exception that there was no formation of liquid
droplets (LD) at any conditions and no self-assembly for qNL =
−4.0 occurred beyond kBT = 0.9.

The octahedral (S6
OC) particles self-assembled within the

range of kBT = 0.1−0.5, kBT = 0.1−1.1, and kBT = 0.1−1.5
when qNL = −2.0, −4.0, and −6.0, respectively (Figure 2E).
While random aggregates (RA2) were formed for most
simulation conditions, S6

OC particles also formed crystalline
(CR) structures under three different conditions: kBT = 0.5
and qNL = −2.0, kBT = 0.9 and qNL = −4.0, and kBT = 1.5 and
qNL = −6.0. The octahedral particles were the only charged
lobed particles to self-assemble into crystalline structures under
the conditions investigated in this study.
Specifically, at qNL = −4.0, we observed that the S6OC particles

undergo a phase transition from random aggregates (RA2)
(Figure 5A) to crystalline (CR) structures (Figure 5B) at kBT
= 0.9, then another transition from crystalline (CR) structures
to spherical aggregates (SA) (Figure 5C) occurs at kBT = 1.1.
We hypothesize that this transition occurs due to a delicate
balance between the electrostatic interactions and the diffusion
effects that are dependent on the temperature of the system.
To form crystalline structures, the particles need just sufficient
kinetic energy to diffuse and adjust their positions for the
growth of the crystalline lattice. However, at a lower
temperature (kBT = 0.7), the particles do not diffuse
sufficiently due to a decreased kinetic energy, while at a higher
temperature (kBT = 1.1), their kinetic energy is too high and
they begin to disassemble. The RDF curve for the condition
when qNL = −4.0 and kBT = 0.9 shows a series of well-defined
and regularly spaced peaks, confirming the crystalline nature of
the self-assembled structures (Figure 5D). The arrangement of

Figure 5. Phase transition observed in systems composed of octahedral particles. The self-assembled morphology transitions from (A) random
aggregates (RA2) to (B) crystalline (CR) structures and then transitions again to (C) spherical aggregates (SA). (D) RDF curves for the structures
involved in the phase transitions. (E) A unit cell of the crystalline structures formed by the S6

OC particles.
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particles in a cubic unit cell of the crystalline self-assembled
structures is also shown in Figure 5E.
We observed the formation of spherical aggregates for four

different types of particles at the following conditions: S3
TP (qNL

= −4.0/kBT = 0.7), S4
TH (qNL = −6.0/kBT = 1.5), S5

TB (qNL =
6.0/kBT = 1.5), and S6

OC (qNL = −4.0/kBT = 1.1). In Figure S7,
we show the largest spherical cluster observed for each of the
four types of particles. These data reveal that the number of
particles in spherical aggregates decreases as the number of
lobes on the particles increases. The spherical aggregates range
from 3820 particles for the S3

TP system to 1196 particles for the
S6
OC system.
To characterize porosities of self-assembled structures, the

largest possible cuboids were extracted from the three-
dimensional structures formed by self-assembly of each type
of particle, with the exception of S4

SP particles, which only
showed two-dimensional sheets. The pore size distributions
(Figure 6) showed that S5

TB and S6
OC self-assemble to form

structures with more homogeneous and smaller pores (ranging
between 1.5σL to 4.5σL, and between 1.5σL to 3.7σL,
respectively), as indicated by a sharp peak in the distributions.
This is likely due to a higher number of lobes, which results in
well packed structures. However, structures formed via self-
assembly of S3

TP and S4
TH particles were observed to be more

heterogeneous and having larger pores (ranging between 2.5σL
to 6.5σL, and between 2.0σL to 6.2σL, respectively).
We also estimated the ASA (Figure S8) by using the cuboids

extracted from self-assembled structures and observed that the
particles with the most lobes (S5

TB and S6
OC) provided

structures with a higher and comparable ASA, as expected
based on the higher surface area of the individual particles.
However, we also observed that the structures formed by the
S4
TH particles showed a significantly lower ASA than the
structures formed by S3

TP. This occurs because the structures
formed by the S3

TP particles are more packed than the ones
formed by the S4

TH particles (Figure 6) since they originate
from a collection of two-dimensional sheets folded and
wrapped around each other (Figure 3).
We also investigated the effect of varying the volume fraction

of particles (Φ) on observed self-assembled morphologies
(Figure 7). These data indicate that for most of the particles
variations in Φ did not affect the type of morphology observed.
In fact, increasing Φ resulted in more uniform and large-scale

self-assembled structures. This observation is consistent with
the results from our previous work on particles without
charges.14 The only exception was the S6

OC particles, where an
increase in Φ resulted in a change in the morphology observed
(from crystalline at Φ = 0.011 to random aggregates at Φ =
0.046 and 0.078) (Figure 7E). This occurs because the higher
densities are a limiting factor for the diffusion of the particles
required for the formation of the crystalline lattices.

■ DISCUSSION
In this work, we investigated the effect of adding charges to
lobes on lobed colloidal particles. We observed a direct
correlation between the formation of self-assembled structures
and the magnitude of charges on the lobes, where an increase
in the charge on a lobe led to self-assembly at a wider range of
temperatures. We also observed that the volume fraction (Φ)
did not have an influence on the type of morphology of a self-
assembled structure although larger self-assemblies were
observed on increasing Φ. Here, we compare the results
obtained for simulations of the lobed particles with charges and
those from our simulations of lobed particles without charges
that were reported in our previous work.14

Figure 6. Pore size distributions. The PSD curves for three-
dimensional porous structures formed by self-assembly of trigonal
planar, tetrahedral, trigonal bipyramidal, and octahedral particles. The
distribution for square-planar particles is not shown due to their self-
assembly into two-dimensional sheets.

Figure 7. Snapshots of simulation domains at various volume
fractions (Φ): (A) trigonal planar (Φ = 0.010, 0.040, and 0.067), (B)
square planar (Φ = 0.010, 0.042, and 0.071), (C) tetrahedral (Φ =
0.010, 0.042, and 0.071), (D) trigonal bipyramidal (Φ = 0.011, 0.044,
and 0.074), and (E) octahedral (Φ = 0.011, 0.046, and 0.078).
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In our earlier work,14 lobed particles without charges were
subjected to short-range interactions that led to several
morphologies (e.g., sheets, tubes, clathrates, polyhedra, face-
centered cubic lattices, and hexagonal close-packed structures).
However, as reported in this work, lobed particles with charges
on the lobes did not form many structures showing a long-
range order. The only exceptions were the two-dimensional
sheets formed by S3

TP and S4
SP particles and the simple cubic

crystals formed by S6
OC particles for certain conditions (Figure

2).
We also compared the porosity of self-assembled structures

obtained from lobed particles with and without charges. We
chose the diameter of the largest free sphere (DLFS) as the
metric for porosity comparison, since a higher porosity and the
formation of a network of pores are desirable characteristics for
materials with applications in several fields, including tissue
engineering.36 A comparison of morphologies of uncharged
and charged particles is shown in Table S1, and their RDFs are
shown in Figure S9.
The estimates for DLFS showed that the lobed particles with

charges reveal morphologies that are more porous than the
ones formed by lobed particles without charges (Figure 8).

This likely happens due to the repulsive electrostatic
interactions that arise between the lobes having the same
charges, an effect that is not observed when the lobes are
without charges and lacking electrostatic interactions.
We have observed that the structures formed via self-

assembly of S4
TH particles showed the highest porosity among

those investigated in this study (DLFS = 3.6σL). However, S4
SP,

S5
TB, and S6

OC particles formed the least porous structures due
to a tighter packing that occurs when two-dimensional
structures are formed (in the case of S4

SP particles) and when
the particles have a higher number of lobes (in the case of S5

TB

and S6
OC building blocks).

To find suitable applications in tissue engineering, a three-
dimensional scaffold is expected to mimic the heterogeneous
and porous nature of the extracellular matrix (ECM) as well as
provide the mechanical strength needed for keeping its
integrity while the tissue regenerates.37 To mimic the ECM,
scaffolds used for tissue regeneration must have a structure
with interconnected pores and high porosity, allowing cellular
penetration and nutrient diffusion with minimal constraints.38

The higher porosities and more heterogeneous character of
our structures, especially the ones formed by self-assembly of
S3
TP and S4

TH particles, indicate that the particles with charged
lobes should be more suitable for designing materials with
applications in the field of tissue engineering.39 Furthermore,
the electrostatic interactions that arise in the particles with
charged lobes produce structures that likely have a higher
mechanical stability than the ones produced by weakly
interacting particles having only short-range interactions due
to uncharged lobes. We also note that the shapes of most
particles (except square planar) are experimentally realiz-
able,13,40−43 but new strategies need to be developed to site-
specifically functionalize lobes in experiments.
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