54 research outputs found

    Voxelwise assessment of the regional distribution of damage in the brains of patients with multiple sclerosis and fatigue

    Get PDF
    BACKGROUND AND PURPOSE: Fatigue affects up to 90% of patients with MS. We assessed the regional distribution of lesions and atrophy of the normal-appearing WM and GM in patients with RRMS with fatigue compared with HC and patients with similar characteristics, but without fatigue. MATERIALS AND METHODS: From 14 patients with RRMS without fatigue, 10 with RRMS with fatigue, and 14 HC, we acquired brain dual-echo and high-resolution T1-weighted scans. Voxel-wise distributions of GM, WM damage, and T2 lesions were compared between patients with fatigued and nonfatigued MS by using SPM5 software. We report results at P < .05, FWE corrected. RESULTS: T2 lesion distribution and regional WM atrophy did not differ between patients with fatigued and nonfatigued MS. Compared with HC, patients with MS had significant WM atrophy in the posterior part of the corpus callosum and significant GM atrophy of the left superior frontal sulcus, left precentral gyrus, posterior cingulate cortex, right thalamus, and left middle frontal gyrus. No additional areas of atrophy were found in patients with nonfatigued MS compared with HC, whereas patients with fatigued MS also had atrophy of the left central sulcus. Atrophy in the left central sulcus and the precentral gyrus was more severe in patients with fatigued versus nonfatigued MS. In patients with MS, significant correlations were found between fatigue severity and GM atrophy in the left precentral gyrus (r = −0.73, P < .0001 uncorrected). CONCLUSIONS: Atrophy of the primary sensorimotor area is likely to contribute to MS-related fatigue

    Functional MRI correlates of cognitive performance in patients with a clinically isolated syndrome suggestive of MS at presentation: an activation and connectivity study

    Get PDF
    Background/Objective: To assess whether abnormalities on functional magnetic resonance imaging (fMRI) are related to cognitive function in patients at presentation with clinically isolated syndrome (CIS) suggestive of multiple sclerosis. Methods: Eighteen patients with CIS and 15 healthy controls (HCs) performed an adapted fMRI version of the Paced Auditory Serial Addition Test (PASAT). According to their PASAT performance, CIS patients were divided into two groups: 10 with a low PASAT performance (<1 SD from the mean value of HCs) were considered ‘cognitive impairment’ (CI); eight patients were defined as ‘cognitively preserved’ (CP). Between-group differences in the patterns of brain activations and effective connectivity were assessed. Results: During PASAT, compared to HCs, CIS patients showed increased activations of the bilateral inferior parietal lobe (IPL), bilateral precuneus, bilateral middle frontal gyrus (MFG), left anterior cingulate cortex (ACC), left claustrum, right thalamus and right caudate nucleus. When CIS patients were analyzed, the CI group had a more significant activation of the bilateral IPL than HCs and CP patients. Compared to CP patients, they also had more significant recruitment of the right superior parietal lobe, right cerebellum, left MFG and left ACC. The analysis of effective connectivity showed stronger connections between several regions of the right hemisphere involved in working memory function in CI patients versus CP and HC. Conclusions: During performance of the PASAT, CIS patients show abnormalities in the patterns of cortical recruitment and connectivity related to the level of their cognitive impairment.This research has been supported by the following grants: Alicia Koplowitz Foundation; CSD2007-00012 (Consolider-Ingenio 2010 Programme), SEJ2007-65929/PSIC and PSI2010-20168 from the Spanish Ministry of Science and Education; the Dávalos Foundation Grant and P1·1A2010-07 from Bancaixa

    Efficacy of fingolimod and interferon beta-1b on cognitive, MRI, and clinical outcomes in relapsing-remitting multiple sclerosis: an 18-month, open-label, rater-blinded, randomised, multicentre study (the GOLDEN study)

    Get PDF
    : Cognitive impairment (CI) affects 40-65% of multiple sclerosis (MS) patients. This study attempted evaluating the effects of fingolimod and interferon beta-1b (IFN β-1b) on CI progression, magnetic resonance imaging (MRI) and clinical outcomes in relapsing-remitting MS (RRMS) patients over 18&nbsp;months. The GOLDEN study was a pilot study including RRMS patients with CI randomised (2:1) to fingolimod (0.5&nbsp;mg daily)/IFN β-1b (250&nbsp;µg every other day). CI was assessed via Rao's Brief Repeatable Battery and Delis-Kaplan Executive Function System test. MRI parameters, Expanded Disability Status Scale scores and relapses were measured. Overall, 157 patients were randomised, of whom 30 discontinued the study (fingolimod, 8.49%; IFN β-1b, 41.18%; p&nbsp;≤&nbsp;0.0001). Patients randomised to fingolimod had more severe clinical and MRI disease characteristics at baseline compared with IFN β-1b. At Month (M) 18, both treatment groups showed improvements in all cognitive parameters. At M18, relapse rate, total number and volume of T2/T1 gadolinium-enhancing lesions were higher with IFN β-1b, as well as the percentage brain volume change during the study. Safety and tolerability of both treatments were similar to previous studies. Both treatments showed improvements in cognitive parameters. Fingolimod demonstrated significantly better effects on MRI parameters and relapse rate. Imbalance in baseline characteristics and the drop-out pattern may have favoured IFN β-1b. A longer duration trial may be needed to observe the complete expression of differential effects on CI scales reflecting the between-groups differences on MRI. Although limited in size, the GOLDEN study confirms the favourable benefit-risk profile of fingolimod reported in previous studies

    Prediction of the information processing speed performance in multiple sclerosis using a machine learning approach in a large multicenter magnetic resonance imaging data set

    Get PDF
    Many patients with multiple sclerosis (MS) experience information processing speed (IPS) deficits, and the Symbol Digit Modalities Test (SDMT) has been recommended as a valid screening test. Magnetic resonance imaging (MRI) has markedly improved the understanding of the mechanisms associated with cognitive deficits in MS. However, which structural MRI markers are the most closely related to cognitive performance is still unclear. We used the multicenter 3T-MRI data set of the Italian Neuroimaging Network Initiative to extract multimodal data (i.e., demographic, clinical, neuropsychological, and structural MRIs) of 540 MS patients. We aimed to assess, through machine learning techniques, the contribution of brain MRI structural volumes in the prediction of IPS deficits when combined with demographic and clinical features. We trained and tested the eXtreme Gradient Boosting (XGBoost) model following a rigorous validation scheme to obtain reliable generalization performance. We carried out a classification and a regression task based on SDMT scores feeding each model with different combinations of features. For the classification task, the model trained with thalamus, cortical gray matter, hippocampus, and lesions volumes achieved an area under the receiver operating characteristic curve of 0.74. For the regression task, the model trained with cortical gray matter and thalamus volumes, EDSS, nucleus accumbens, lesions, and putamen volumes, and age reached a mean absolute error of 0.95. In conclusion, our results confirmed that damage to cortical gray matter and relevant deep and archaic gray matter structures, such as the thalamus and hippocampus, is among the most relevant predictors of cognitive performance in MS

    The impact of the COVID-19 pandemic on an international rehabilitation study in MS: the CogEx experience

    Get PDF
    Pandemic restrictions have led to changes in therapy plans and disrupted rehabilitation services for people with multiple sclerosis. CogEx is an international, multicentre MS dual-intervention (cognitive rehabilitation, aerobic exercise) randomized, controlled rehabilitation trial confined to people with progressive disease. The primary outcome is cognition (processing speed).There are 11 treatment sites in six countries with participants required to make 27 site visits over 12 weeks. Collectively, the large, in-person demands of the trial, and the varying international policies for the containment of COVID-19, might disproportionately impact the administration of CogEx. During the first lockdown, all centres closed on average for 82.9 (SD = 24.3) days. One site was required to lockdown on two further occasions. One site remained closed for 16 months. Ten staff (19.2%) were required to quarantine and eight staff (15.4%) tested positive for COVID. 10 of 264 (3.8%) participants acquired COVID-19. All survived. The mean duration of enrollment delay has been [236.7 (SD = 214.5) days]. Restarting participants whose interventions were interrupted by the pandemic meant recalculating the intervention prescriptions for these individuals. While the impact of the pandemic on CogEx has been considerable, all study sites are again open. Participants and staff have shown considerable flexibility and resilience in keeping a complex, international endeavour running. The future in general remains uncertain in the midst of a pandemic, but there is cautious optimism the study will be completed with sufficient sample size to robustly evaluate our hypothesis and provide meaningful results to the MS community on the impact of these interventions on people with progressive MS. Trial registration: The trial was registered on September 20th 2018 at www.clinicaltrials.gov having identifier NCT03679468. Registration was performed before recruitment was initiated

    The relationship between processing speed and verbal and non-verbal new learning and memory in progressive multiple sclerosis

    Get PDF
    Objective: Processing speed (PS) deficits are the most common cognitive deficits in multiple sclerosis (MS), followed by learning and memory deficits, and are often an early cognitive problem. It has been argued that impaired PS is a primary consequence of MS, which in turn decreases learning. The current analysis examined the association between PS and learning in a large cohort of individuals with progressive MS. Methods: Baseline data from a randomized clinical trial on rehabilitation taking place at 11 centers across North America and Europe were analyzed. Participants included 275 individuals with clinically definite progressive MS (primary, secondary) consented into the trial. Results: Symbol Digit Modalities Test (SDMT) significantly correlated with California Verbal Learning Test-II (CVLT-II) (r = 0.21, p = 0.0003) and Brief Visuospatial Memory Test–Revised (BVMT-R) (r = 0.516, p < 0.0001). Receiver operating characteristic (ROC) analysis of the SDMT z score to distinguish between impaired and non-impaired CVLT-II performance demonstrated an area under the curve (AUC) of 0.61 (95% confidence interval (CI): 0.55–0.68) and a threshold of −1.62. ROC analysis between SDMT and BVMT-R resulted in an AUC of 0.77 (95% CI: 0.71–0.83) and threshold of −1.75 for the SDMT z score to predict impaired BVMT-R. Conclusion: Results indicate little ability beyond chance to predict CVLT-II from SDMT (61%), albeit statistically significant. In contrast, there was a 77% chance that the model could distinguish between impaired and non-impaired BVMT-R. Several potential explanations are discussed

    Neural precursor cells tune striatal connectivity through the release of IGFBPL1

    Get PDF
    The adult brain retains over life endogenous neural stem/precursor cells (eNPCs) within the subventricular zone (SVZ). Whether or not these cells exert physiological functions is still unclear. In the present work, we provide evidence that SVZ-eNPCs tune structural, electrophysiological, and behavioural aspects of striatal function via secretion of insulin-like growth factor binding protein-like 1 (IGFBPL1). In mice, selective ablation of SVZ-eNPCs or selective abrogation of IGFBPL1 determined an impairment of striatal medium spiny neuron morphology, a higher failure rate in GABAergic transmission mediated by fast-spiking interneurons, and striatum-related behavioural dysfunctions. We also found IGFBPL1 expression in the human SVZ, foetal and induced-pluripotent stem cell-derived NPCs. Finally, we found a significant correlation between SVZ damage, reduction of striatum volume, and impairment of information processing speed in neurological patients. Our results highlight the physiological role of adult SVZ-eNPCs in supporting cognitive functions by regulating striatal neuronal activity

    Relation of sensorimotor and cognitive cerebellum functional connectivity with brain structural damage in patients with multiple sclerosis and no disability

    Get PDF
    Background and purpose To investigate the relationship between the functional connectivity (FC) of the sensorimotor and cognitive cerebellum and measures of structural damage in patients with multiple sclerosis (MS) and no physical disability. Methods We selected 144 relapsing-remitting MS patients with an Expanded Disability Status Scale score of &lt;= 1.5 and 98 healthy controls from the Italian Neuroimaging Network Initiative database. From multimodal 3T magnetic resonance imaging (MRI), including functional MRI at rest, we calculated lesion load, cortical thickness, and white matter, cortical gray matter, and caudate, putamen, thalamic, and cerebellar volumes. Voxel-wise FC of the sensorimotor and cognitive cerebellum was assessed with seed-based analysis, and multiple regression analysis was used to evaluate the relationship between FC and structural damage. Results Whole brain, white matter, caudate, putamen, and thalamic volumes were reduced in patients compared to controls, whereas cortical gray matter was not significantly different in patients versus controls. Both the sensorimotor and cognitive cerebellum showed a widespread pattern of increased and decreased FC that were negatively associated with structural measures, indicating that the lower the FC, the greater the tissue loss. Lastly, among multiple structural measures, cortical gray matter and white matter volumes were the best predictors of cerebellar FC alterations. Conclusions Increased and decreased cerebellar FC with several brain areas coexist in MS patients with no disability. Our data suggest that white matter loss hampers FC, whereas, in the absence of atrophy, cortical volume represents the framework for FC to increase

    Plasticity in Multiple Sclerosis: From Molecular to System Level, from Adaptation to Maladaptation

    No full text
    This research topic aims at providing a state of the art update on neuroplasticity in humans with multiple sclerosis. It summarizes advances in plasticity research as achieved by a variety of techniques, in the motor as well as visual and cognitive domain. We are confident that this collection of articles broadens the view across systems and techniques and widens our understanding of this exciting field of research
    • …
    corecore