25 research outputs found

    Immunomodulatory properties of the protein fraction from Phorphyra columbina

    Get PDF
    The phycobiliproteins from Rhodophyta, R-phycoerythrin (R-PE) and C-phycocyanin (C-PC), have been shown to exert immunomodulatory effects. This study evaluated the effects of a Phorphyra columbina protein fraction (PF) and R-PE and C-PC on rat primary splenocytes, macrophages, and T-lymphocytes in vitro. PF featured various protein species, including R-PE and C-PC. PF showed mitogenic effects on rat splenocytes and was nontoxic to cells except at 1 g L-1 protein. IL-10 secretion was enhanced by PF in rat splenocytes, macrophages, and especially T-lymphocytes, whereas it was markedly diminished by R-PE and C-PC. The production of pro-inflammatory cytokines by macrophages was inhibited. The effect of PF on IL-10 was evoked by JNK/p38 MAPK and NF-κB-dependent pathways in macrophages and T-lymphocytes. It was concluded that PF has immunomodulatory effects on macrophages and lymphocytes that appear to be predominantly anti-inflammatory via up-regulated IL-10 production and cannot be accounted for by R-PE and C-PC.Fil: Cian, Raúl Esteban. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Agroindustria. Instituto de Tecnología de Alimentos; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: López Posadas, Rocío. Universidad de Granada; EspañaFil: Drago, Silvina Rosa. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sánchez De Medina, Fermín. Universidad de Granada; EspañaFil: Martínez Augustin, Olga. Universidad de Granada; Españ

    Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation

    Get PDF
    Although defects in intestinal barrier function are discussed as a key pathogenic factor in patients with inflammatory bowel diseases (IBD), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we performed a novel approach to characterize the transcriptome of IECs from IBD patients using a genome wide approach. We observed disease-specific alterations in IECs with markedly impaired Rho-A signaling in active IBD patients. Localization of epithelial Rho-A was shifted to the cytosol in IBD where Rho-A activation was suppressed due to reduced expression of the Rho-A prenylation enzyme GGTase-I. The functional relevance of this pathway was highlighted by studies in mice with conditional gene targeting in which deletion of RhoA or GGTase-I in IECs caused spontaneous chronic intestinal inflammation with accumulation of granulocytes and CD4+ T cells. This phenotype was associated with cytoskeleton rearrangement and aberrant cell shedding ultimately leading to loss of epithelial integrity and subsequent inflammation. These findings uncover deficient prenylation of Rho-A as a key player in the pathogenesis of IBD. As therapeutic triggering of Rho-A signaling suppressed intestinal inflammation in mice with GGTase-I deficient IECs, our findings open new avenues for treatment of epithelial injury and mucosal inflammation in IBD patients

    Differential effects of α4β7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo

    Get PDF
    Objective: Gut homing of lymphocytes via adhesion molecules has recently emerged as new target for therapy in inflammatory bowel diseases. We aimed to analyze the in vivo homing of effector (Teff) and regulatory (Treg) T cells to the inflamed gut via α4β7 and GPR15. Design: We assessed the expression of homing receptors on T cells in peripheral blood and inflamed mucosa. We studied the migration pattern and homing of Teff and Treg cells to the inflamed gut using intravital confocal microscopy and FACS in a humanized mouse model in DSS-treated NSG (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) mice. Results: Expression of GPR15 and α4β7 was significantly increased on Treg rather than Teff cells in peripheral blood of patients with ulcerative colitis (UC) as compared to Crohn´s disease and controls. In vivo analysis in a humanized mouse model showed augmented gut homing of UC Treg cells as compared to controls. Moreover, suppression of UC (but not control) Teff and Treg cell homing was noted upon treatment with the α4β7 antibody vedolizumab. In contrast, siRNA blockade of GPR15 had only effects on homing of Teff cells but did not affect Treg homing in UC. Clinical vedolizumab treatment was associated with marked expansion of UC Treg cells in peripheral blood. Conclusion: α4β7 rather than GPR15 is crucial for increased colonic homing of UC Treg cells in vivo, while both receptors control UC Teff homing. Vedolizumab treatment impairs homing of UC Treg cells leading to their accumulation in peripheral blood with subsequent suppression of systemic effector T cell expansion

    Análisis de frecuencias alélicas y genotípicas de las variantes CYP2A6*12 y rs16969968 de CHRNA5 y su asociación con el hábito de fumar y el índice de masa corporal (IMC) en sujetos jóvenes del noreste de México

    Get PDF
    Several studies have reported that variants rs16969968 G>A of the CHRNA5 gene and CYP2A6*12 of the CYP2A6 gene are associated with smoking and smoking refusal, respectively. In addition, some studies report that a higher cigarette consumption is associated with low body mass index (BMI). Aim: To analyze the allele and genotypic frequencies of these variants and their impact on smoking and BMI. Material and Methods: A blood sample was obtained and a survey about smoking habits was answered by 319 university students aged 18 to 35 years (127 women, 171 smokers), living in Northeastern Mexico. Genetic variants were studied by polymerase chain reaction/ restriction fragment length polymorphism and their frequencies were associated with smoking and BMI. Results: No associations were found between the analyzed variants and smoking in the study groups. However, there was an association among non-smoking subjects between the A allele of rs16969968 and high a BMI (p < 0.01). Conclusions: This last variant may be involved in food-addiction disorders

    Epithelial RAC1-dependent cytoskeleton dynamics controls cell mechanics, cell shedding and barrier integrity in intestinal inflammation

    Get PDF
    Objective: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. Design: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1biΔIEC and Rac1iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. Results: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. Conclusion: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD

    Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    Get PDF
    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF- a . Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF- k B pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.The authors acknowledge financial support from FEDER funds and Fondo Social Europeo through grants from the Spanish Ministry of Economy and Competitiveness (grants SAF2011-22922, SAF2011-22812) the Andalusian regional government Junta de Andalucía (grant CVI-7335) and the Centre of Networked Biomedical Research on Hepatic and Digestive Diseases (CIBERehd) which is funded by the Carlos III Health Institute and the Ramón Areces Foundation, Spain

    Impact of Epithelial Cell Shedding on Intestinal Homeostasis

    No full text
    The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances

    Interplay of GTPases and Cytoskeleton in Cellular Barrier Defects during Gut Inflammation

    No full text
    An essential role of the intestine is to build and maintain a barrier preventing the luminal gut microbiota from invading the host. This involves two coordinated physical and immunological barriers formed by single layers of intestinal epithelial and endothelial cells, which avoid the activation of local immune responses or the systemic dissemination of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epithelial and endothelial barrier functions have been associated with gut inflammation, for example during inflammatory bowel disease (IBD). The discriminative control of nutriment uptake and sealing toward potentially pathological microorganisms requires a profound regulation of para- and transcellular permeability. On the subcellular level, the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. Increased epithelial/endothelial permeability occurs primarily as a result of a reorganization of cytoskeletal–junctional complexes. Pro-inflammatory mediators such as cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent defects in gut barrier function. In this context, small GTPases of the Rho family and large GTPases from the Dynamin superfamily appear as major cellular switches regulating the interaction between intercellular junctions and actomyosin complexes, and in turn cytoskeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, we will summarize the role of small and large GTPases for cytoskeleton plasticity and epithelial/endothelial barrier in the context of gut inflammation
    corecore