28 research outputs found

    Nitrogen isotopic inventory of the Lena River Delta

    Get PDF
    Permafrost-affected soils around the Arctic Ocean contain a large reservoir of organic matter including nitrogen, which partly reach the river after thawing, degradation and erosion of permafrost. After mobilization, reactive remineralised nitrogen is either used for primary production, microbial processing or is simply transported to coastal waters. We have analyzed soil, suspended matter and dissolved inorganic and organic nitrogen for their contents and 15N stable isotope composition to create a baseline for a nitrogen inventory of the Lena River Delta in 2019/2020. We used samples from two transect cruises through the delta in March and August 2019, a monitoring program at Samoylov Island in the central delta (2019/2020), and different soil type samples from Samoylov Island. Our data shows that the nitrogen transported from the delta to the Laptev Sea were dominated by dissolved organic nitrogen (DON) and nitrate, which occur in similar amounts of approx. 10 μmol/L. DON was available during the whole year. Nitrate showed a clear seasonal pattern: increase from late summer until the spring flood, during summer the nitrate concentration are close to zero. During the spring flood the nitrogen concentration are higher with up to 100 μmol/L. The nitrogen stable isotope values of the different nitrogen components ranges mainly between 0.5 and 4.5‰, and were subsequently enriched from the soils via suspended particulate matter (SPM)/sediment and DON to nitrate. During the spring flood, the stable isotope signature of nitrate suggested a strong source of atmospheric deposition. The 15N values are depleted with appox. -8‰ and the 18O values are enriched up to 60‰. Our data provides a baseline for isoscape analysis and can be used as an endmember signal for modeling approaches

    Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes

    Get PDF
    Nutrient cycles in the Arctic Ocean are being altered by changing hydrography, increasing riverine inputs, glacial melt and sea-ice loss due to climate change. In this study, combined isotopic measurements of dissolved nitrate (δ15N-NO3 and δ18O-NO3) and silicic acid (δ30Si(OH)4) are used to understand the pathways that major nutrients follow through the Arctic Ocean. Atlantic waters were found to be isotopically lighter (δ30Si(OH)4=+ 1.74 ‰) than their polar counterpart (δ30Si(OH)4=+ 1.85 ‰) owing to partial biological utilisation of dissolved Si (DSi) within the Arctic Ocean. Coupled partial benthic denitrification and nitrification on Eurasian Arctic shelves lead to the enrichment of δ15N-NO3 and lighter δ18O-NO3 in the polar surface waters (δ15N-NO3= 5.44 ‰, δ18O-NO3= 1.22 ‰) relative to Atlantic waters (δ15N-NO3= 5.18 ‰, δ18O-NO3= 2.33 ‰). Using a pan-Arctic DSi isotope dataset, we find that the input of isotopically light δ30Si(OH)4 by Arctic rivers and the subsequent partial biological uptake and biogenic Si burial on Eurasian shelves are the key processes that generate the enriched isotopic signatures of DSi exported through Fram Strait. A similar analysis of δ15N-NO3 highlights the role of N-limitation due to denitrification losses on Arctic shelves in generating the excess dissolved silicon exported through Fram Strait. We estimate that around 40 % of DSi exported in polar surface waters through Fram Strait is of riverine origin. As the Arctic Ocean is broadly N-limited and riverine sources of DSi are increasing faster than nitrogen inputs, a larger silicic acid export through the Fram Strait is expected in the future. Arctic riverine inputs therefore have the potential to modify the North Atlantic DSi budget and are expected to become more important than variable Pacific and glacial DSi sources over the coming decades.</p

    Isotopic fractionation of carbon during uptake by phytoplankton across the South Atlantic subtropical convergence

    Get PDF
    The stable isotopic composition of particulate organic carbon (δ13CPOC) in the surface waters of the global ocean can vary with the aqueous CO2 concentration ([CO2(aq)]) and affects the trophic transfer of carbon isotopes in the marine food web. Other factors such as cell size, growth rate and carbon concentrating mechanisms decouple this observed correlation. Here, the variability in δ13CPOC is investigated in surface waters across the south subtropical convergence (SSTC) in the Atlantic Ocean, to determine carbon isotope fractionation (Ͼp) by phytoplankton and the contrasting mechanisms of carbon uptake in the subantarctic and subtropical water masses. Our results indicate that cell size is the primary determinant of δ13CPOC across the Atlantic SSTC in summer. Combining cell size estimates with CO2 concentrations, we can accurately estimate "p within the varying surface water masses in this region. We further utilize these results to investigate future changes in "p with increased anthropogenic carbon availability. Our results suggest that smaller cells, which are prevalent in the subtropical ocean, will respond less to increased [CO2(aq)] than the larger cells found south of the SSTC and in the wider Southern Ocean. In the subantarctic water masses, isotopic fractionation during carbon uptake will likely increase, both with increasing CO2 availability to the cell, but also if increased stratification leads to decreases in average community cell size. Coupled with decreasing δ13C of [CO2(aq)] due to anthropogenic CO2 emissions, this change in isotopic fractionation and lowering of δ13CPOC may propagate through the marine food web, with implications for the use of δ13CPOC as a tracer of dietary sources in the marine environment

    Permafrost degradation and nitrogen cycling in Arctic rivers: Insights from stable nitrogen isotope studies

    Get PDF
    Abstract. Across the Arctic, vast areas of permafrost are being degraded by climate change, which has the potential to release substantial quantities of nutrients, including nitrogen into large Arctic rivers. These rivers heavily influence the biogeochemistry of the Arctic Ocean, so it is important to understand the potential changes to rivers from permafrost degradation. This study utilized dissolved nitrogen species (nitrate and dissolved organic nitrogen (DON)) along with nitrogen isotope values (δ15N-NO3- and δ15N-DON) of samples collected from permafrost sites in the Kolyma River and the six largest Arctic rivers. Large inputs of DON and nitrate with a unique isotopically heavy δ15N signature were documented in the Kolyma, suggesting the occurrence of denitrification and highly invigorated nitrogen cycling in the Yedoma permafrost thaw zones along the Kolyma. We show evidence for permafrost-derived DON being recycled to nitrate as it passes through the river, transferring the high 15N signature to nitrate. However, the potential to observe these thaw signals at the mouths of rivers depends on the spatial scale of thaw sites, permafrost degradation, and recycling mechanisms. In contrast with the Kolyma, with near 100 % continuous permafrost extent, the Ob River, draining large areas of discontinuous and sporadic permafrost, shows large seasonal changes in both nitrate and DON isotopic signatures. During winter months, water percolating through peat soils records isotopically heavy denitrification signals in contrast with the lighter summer values when surface flow dominates. This early year denitrification signal was present to a degree in the Kolyma, but the ability to relate seasonal nitrogen signals across Arctic Rivers to permafrost degradation could not be shown with this study. Other large rivers in the Arctic show different seasonal nitrogen trends. Based on nitrogen isotope values, the vast majority of nitrogen fluxes in the Arctic rivers is from fresh DON sourced from surface runoff through organic-rich topsoil and not from permafrost degradation. However, with future permafrost thaw, other Arctic rivers may begin to show nitrogen trends similar to the Ob. Our study demonstrates that nitrogen inputs from permafrost thaw can be identified through nitrogen isotopes, but only on small spatial scales. Overall, nitrogen isotopes show potential for revealing integrated catchment wide nitrogen cycling processes. </jats:p

    Permafrost land-ocean interactions: fluxes, transport processes and degradation pathways

    Get PDF
    Permafrost-affected soils around the Arctic Ocean contain a large reservoir of organic matter including nitrogen, which partly reaches the riverine system after thawing, degradation and erosion of permafrost. After mobilization, reactive nitrogen in form of dissolved organic nitrogen (DON) ordissolved inorganic nitrogen (DIN: ammonium and nitrate) is either used for primary production, microbial turnover and/or is transported to coastal waters where it serves as a key source of nutrition for the marine food web. In this study, we have followed the nitrogen released from permafrost soil via the Lena River into the Laptev Sea and used the natural abundance of 15N stable isotopes to identify sources, sinks and processes. Therefore, we have investigated different soil. We present a comprehensive data set from two transect cruises (03/08 2019) through the delta, and the outcome of a monitoring program (2018 - 2021) at Samoylov Island in the central delta. High-frequency monitoring and cruise data shows that the nitrogen transported from the river to the Laptev Sea was dominated by DON and nitrate, which occurred in similar amounts of approx. 10 μmol L–1 in the river water. The nitrate concentration decreased during the early summer and increased from late summer throughout the winter until the spring flood. During the spring flood, the nitrogen concentration was up to ten times higher. Thus, spring floods transport approx. 20 % of the annual load of reactive nitrogen into the Laptev Sea just at the onset of the growing season. The nitrogen stable isotope values of the different nitrogen components ranged mainly between 0.5 and 4.5‰, and were subsequently enriched from the permafrost soils via suspended particulate matter/sediment and DON to nitrate, which indicate an oligotrophic ecosystem. Using a Bayesian mixing model, the stable isotope signature of nitrate suggested a strong source of atmospheric deposition during the spring flood. During the rest of the year, soils are the main source of the reactive nitrogen, which is transported to the marine realm

    Diurnal variability in alkaline phosphatase activity and the potential role of zooplankton

    Get PDF
    Daily light–dark cycles drive the circadian rhythm of many ocean processes including photosynthesis, gene expression, and zooplankton diel vertical migration (DVM). In phosphate deplete surface ocean regions, microbes produce metalloenzymes, such as alkaline phosphatases (AP), to access dissolved organic phosphorus. Here, we provide novel evidence of diurnal variation in AP activity (APA) in the subtropical North Atlantic using two independent datasets, with APA being two‐ to three‐fold higher at night. We demonstrate that zooplankton are a source of AP and postulate that zooplankton DVM is a source of enhanced AP in the surface waters at night, with reduction or degradation of AP during the day. Our results challenge the current assumption that APA is linear over a 24‐h period. While future ocean scenarios predict intensification and expansion of oceanic phosphate limitation, our findings indicate a role for zooplankton in regenerating phosphate that is currently missing in conceptual and numerical models

    Observations of Nutrient Supply by Mesoscale Eddy Stirring and Small-Scale Turbulence in the Oligotrophic North Atlantic

    Get PDF
    Sustaining biological export over the open ocean requires a physical supply of nutrients to the mixed layer and thermocline. The relative importance of diapycnal mixing, diapycnal advection and isopycnal stirring by mesoscale eddies in providing this nutrient supply is explored using a field campaign in oligotrophic waters in the subtropical North Atlantic, consisting of transects over and off the mid-Atlantic ridge. Eddy stirring rates are estimated from the excess temperature variance dissipation relative to the turbulent kinetic energy dissipation, and using eddy statistics from satellite observations combined with 9-month-long mooring data. The vertical nutrient fluxes by diapycnal mixing, diapycnal advection and isopycnal mesoscale eddy stirring are assessed using nitrate measurements from observations or a climatology. Diapycnal mixing and advection provide a nutrient supply within the euphotic zone, but a loss of nutrients within the upper thermocline. Eddy stirring augments, and is comparable to, the diapycnal transfer of nutrients within the summertime upper thermocline, while also acting to replenish nutrients within the deeper parts of the thermocline. The eddy supply of nitrate is relatively small in the centre of the subtropical gyre, reaching up to 0.06 mol N m−2yr−1, but is likely to be enhanced on the flanks of the gyre due to larger isopycnal slopes and lateral nitrate gradients. The nutrient supply to the euphotic zone is achieved via a multi-stage mechanism: a diapycnal transfer of nutrients by small-scale turbulence to the euphotic zone, and an isopycnal stirring of nutrients by mesoscale eddies replenishing nutrients in the upper thermocline. Plain Language Summary Phytoplankton growth requires a supply of nutrients to the base of the euphotic zone, which is usually provided by a combination of vertical mixing or vertical upwelling of nutrients. However, in the oligotrophic waters of the central North Atlantic, it is unclear how the vertical supply of nutrients is sustained. Here we use field data to explore the roles of mixing across density surfaces, advection across density surfaces and mesoscale eddy stirring along density surfaces in supplying nutrients to some of the most nutrient-depleted surface waters in the central North Atlantic. Diapycnal mixing and advection are found to be important in supplying nutrients to the euphotic zone during summer, but at the expense of eroding the nutrients in the upper thermocline. In contrast, mesoscale eddy stirring augments the diapycnal supply of nutrients to the euphotic zone, and replenishes nutrients in the upper thermocline

    Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid‐ocean Ridges

    Get PDF
    Diapycnal mixing of nutrients from the thermocline to the surface sunlit ocean is thought to be relatively weak in the world's subtropical gyres as energy inputs from winds are generally low. The interaction of internal tides with rough topography enhances diapycnal mixing, yet the role of tidally induced diapycnal mixing in sustaining nutrient supply to the surface subtropical ocean remains relatively unexplored. During a field campaign in the North Atlantic subtropical gyre, we tested whether tidal interactions with topography enhance diapycnal nitrate fluxes in the upper ocean. We measured an order of magnitude increase in diapycnal nitrate fluxes to the deep chlorophyll maximum (DCM) over the Mid‐Atlantic Ridge compared to the adjacent deep ocean. Internal tides drive this enhancement, with diapycnal nitrate supply to the DCM increasing by a factor of 8 between neap and spring tides. Using a global tidal dissipation database, we find that this spring‐neap enhancement in diapycnal nitrate fluxes is widespread over ridges and seamounts. Mid‐ocean ridges therefore play an important role in sustaining the nutrient supply to the DCM, and these findings may have important implications in a warming global ocean
    corecore