9 research outputs found
Data mining techniques for identification of sugarcane crop areas in images of Landsat 5
This work investigated the adherence of data mining techniques oriented to data classification problems in the identification of sugarcane crop areas in Landsat 5/TM images. To do so, pixels of images having sugarcane crop areas were studied in three different phenological phases. Such pixels were converted into surface reflectance values in neighborhood of the towns Araras, Araraquara and São Carlos in São Paulo State. It were generated five decision tree models using the algorithm C4.5 and all of them produced accuracy rates above 90%. The introduction of texture attributes brought significant gains in accuracy of the classification model and helped improve the model of distinction of areas cultivated with sugarcane in the midst of various types of land cover, such as bare soil, urban areas, lakes and rivers. The vegetation indices were relevant in distinguishing phenological phases. The results support the potential of decision trees in process of classification and identification of areas cultivated with sugarcane in different cities inside São Paulo state.Neste trabalho, verificou-se a aderência de técnicas de mineração de dados voltadas para problemas de classificação de dados na identificação automatizada de áreas cultivadas com cana-de-açúcar, em imagens do satélite Landsat 5/TM. Para essa verificação, foram estudadas imagens de áreas cultivadas com cana-de-açúcar em três fases fenológicas diferentes. Os pixels foram convertidos em valores de refletância de superfície, nas vizinhanças das cidades de Araras, São Carlos e Araraquara, no Estado de São Paulo. Foram gerados cinco modelos de árvores de decisão binária, induzidos pelo algoritmo C4.5, em que todos produziram taxas de acerto superiores a 90%. A introdução de atributos de textura trouxe ganhos significativos na acurácia do modelo de classificação e contribuiu para melhorar a distinção de áreas cultivadas com cana-de-açúcar em meio a tipos diversos de cobertura do solo, como solo exposto, área urbana, lagos e rios. Os índices de vegetação mostraram-se relevantes na distinção da fase e do estado fenológico das culturas. Os resultados reforçam o potencial forte das árvores de decisão no processo de classificação e identificação de áreas cultivadas com cana-de-açúcar, em diferentes cidades produtoras, no Estado de São Paulo.1268128
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Clinical Characteristics, Racial Inequities, and Outcomes in Patients with Breast Cancer and COVID-19: A COVID-19 and Cancer Consortium (CCC19) Cohort Study
BACKGROUND: Limited information is available for patients with breast cancer (BC) and coronavirus disease 2019 (COVID-19), especially among underrepresented racial/ethnic populations.
METHODS: This is a COVID-19 and Cancer Consortium (CCC19) registry-based retrospective cohort study of females with active or history of BC and laboratory-confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection diagnosed between March 2020 and June 2021 in the US. Primary outcome was COVID-19 severity measured on a five-level ordinal scale, including none of the following complications, hospitalization, intensive care unit admission, mechanical ventilation, and all-cause mortality. Multivariable ordinal logistic regression model identified characteristics associated with COVID-19 severity.
RESULTS: 1383 female patient records with BC and COVID-19 were included in the analysis, the median age was 61 years, and median follow-up was 90 days. Multivariable analysis revealed higher odds of COVID-19 severity for older age (aOR per decade, 1.48 [95% CI, 1.32-1.67]); Black patients (aOR 1.74; 95 CI 1.24-2.45), Asian Americans and Pacific Islander patients (aOR 3.40; 95 CI 1.70-6.79) and Other (aOR 2.97; 95 CI 1.71-5.17) racial/ethnic groups; worse ECOG performance status (ECOG PS ≥2: aOR, 7.78 [95% CI, 4.83-12.5]); pre-existing cardiovascular (aOR, 2.26 [95% CI, 1.63-3.15])/pulmonary comorbidities (aOR, 1.65 [95% CI, 1.20-2.29]); diabetes mellitus (aOR, 2.25 [95% CI, 1.66-3.04]); and active and progressing cancer (aOR, 12.5 [95% CI, 6.89-22.6]). Hispanic ethnicity, timing, and type of anti-cancer therapy modalities were not significantly associated with worse COVID-19 outcomes. The total all-cause mortality and hospitalization rate for the entire cohort was 9% and 37%, respectively however, it varied according to the BC disease status.
CONCLUSIONS: Using one of the largest registries on cancer and COVID-19, we identified patient and BC-related factors associated with worse COVID-19 outcomes. After adjusting for baseline characteristics, underrepresented racial/ethnic patients experienced worse outcomes compared to non-Hispanic White patients.
FUNDING: This study was partly supported by National Cancer Institute grant number P30 CA068485 to Tianyi Sun, Sanjay Mishra, Benjamin French, Jeremy L Warner; P30-CA046592 to Christopher R Friese; P30 CA023100 for Rana R McKay; P30-CA054174 for Pankil K Shah and Dimpy P Shah; KL2 TR002646 for Pankil Shah and the American Cancer Society and Hope Foundation for Cancer Research (MRSG-16-152-01-CCE) and P30-CA054174 for Dimpy P Shah. REDCap is developed and supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH). The funding sources had no role in the writing of the manuscript or the decision to submit it for publication.
CLINICAL TRIAL NUMBER: CCC19 registry is registered on ClinicalTrials.gov, NCT04354701
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Recommended from our members
Clinical characteristics, racial inequities, and outcomes in patients with breast cancer and COVID-19: A COVID-19 and cancer consortium (CCC19) cohort study
BackgroundLimited information is available for patients with breast cancer (BC) and coronavirus disease 2019 (COVID-19), especially among underrepresented racial/ethnic populations.MethodsThis is a COVID-19 and Cancer Consortium (CCC19) registry-based retrospective cohort study of females with active or history of BC and laboratory-confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection diagnosed between March 2020 and June 2021 in the US. Primary outcome was COVID-19 severity measured on a five-level ordinal scale, including none of the following complications, hospitalization, intensive care unit admission, mechanical ventilation, and all-cause mortality. Multivariable ordinal logistic regression model identified characteristics associated with COVID-19 severity.Results1383 female patient records with BC and COVID-19 were included in the analysis, the median age was 61 years, and median follow-up was 90 days. Multivariable analysis revealed higher odds of COVID-19 severity for older age (aOR per decade, 1.48 [95% CI, 1.32-1.67]); Black patients (aOR 1.74; 95 CI 1.24-2.45), Asian Americans and Pacific Islander patients (aOR 3.40; 95 CI 1.70-6.79) and Other (aOR 2.97; 95 CI 1.71-5.17) racial/ethnic groups; worse ECOG performance status (ECOG PS ≥2: aOR, 7.78 [95% CI, 4.83-12.5]); pre-existing cardiovascular (aOR, 2.26 [95% CI, 1.63-3.15])/pulmonary comorbidities (aOR, 1.65 [95% CI, 1.20-2.29]); diabetes mellitus (aOR, 2.25 [95% CI, 1.66-3.04]); and active and progressing cancer (aOR, 12.5 [95% CI, 6.89-22.6]). Hispanic ethnicity, timing, and type of anti-cancer therapy modalities were not significantly associated with worse COVID-19 outcomes. The total all-cause mortality and hospitalization rate for the entire cohort was 9% and 37%, respectively however, it varied according to the BC disease status.ConclusionsUsing one of the largest registries on cancer and COVID-19, we identified patient and BC-related factors associated with worse COVID-19 outcomes. After adjusting for baseline characteristics, underrepresented racial/ethnic patients experienced worse outcomes compared to non-Hispanic White patients.FundingThis study was partly supported by National Cancer Institute grant number P30 CA068485 to Tianyi Sun, Sanjay Mishra, Benjamin French, Jeremy L Warner; P30-CA046592 to Christopher R Friese; P30 CA023100 for Rana R McKay; P30-CA054174 for Pankil K Shah and Dimpy P Shah; KL2 TR002646 for Pankil Shah and the American Cancer Society and Hope Foundation for Cancer Research (MRSG-16-152-01-CCE) and P30-CA054174 for Dimpy P Shah. REDCap is developed and supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH). The funding sources had no role in the writing of the manuscript or the decision to submit it for publication.Clinical trial numberCCC19 registry is registered on ClinicalTrials.gov, NCT04354701